PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 44 | 3 |

Tytuł artykułu

Conformations, orientations and time scales characterising dimyristoylphosphatidylcholine bilayer membrane. Molecular dynamics simulation studies

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The results of molecular dynamics simulation of fully hydrated dimyristoyl­phosphatidylcholine (DMPC) bilayer membrane in the liquid-crystalline phase are presented. They show that the probability of a gauche conformation varies periodically along the chain with only a slight increase towards the end of the chain. However, the frequency of transition between conformations increases, due to a decrease in the lifetime of the trans conformation, along the chain. The average lifetimes for trans conformations are in the range of 1-2 x 10-10 s and for gauche conformations in the range of 4-7 x 10-11 s. The α-chain of the DMPC head group has mainly an extended conformation, due to predominantly trans conformation of α5 torsion. The rotational correlation time for the P-N vector is 3.7 ns. The C2-C1-011-P fragment of the DMPC head group (θ1, α1, α2 torsions) is rigid while the P-012-C11-C12 fragment ( α3, α4, α5 torsions) is flexible. The lateral diffusion coefficient for DMPC self-diffusion in the mem­brane is 2 x 10-7 cm2/s; the rate of transverse diffusion is the same. Large differences in the calculated rotational correlation times for the a-, β-, γ-chains and for the 021-Cl-vector indicate that in the liquid-crystalline bilayer each segment of the DMPC molecule exhibits its own rotational freedom, in addition to its internal flexibility resulting from rotational isomerism. The results obtained in these calculations, although in general agreement with some ex­perimental data, shed new light on the dynamical behaviour of phosphatidyl­choline molecules in the bilayer membrane in the liquid-crystalline phase.

Wydawca

-

Rocznik

Tom

44

Numer

3

Opis fizyczny

p.607-624,fig.

Twórcy

  • Jagiellonian University, al.A.Mickiewicza 3, 31-120 Crocow, Poland; E-mail: mpg@mol.uj.edu.pl
autor

Bibliografia

  • 1. Casal, H.L. & McElhaney, R.N. (1990) Quan­titative determination of hydrocarbon chain conformational order in bilavers of saturated phosphatidylcholines of various chain lengths by Fourier transform infrared spectroscopy. Biochemistry 29. 4523-5427.
  • 2. Mendelsohn, R., Davies, M.A., Brauner, J.W., Schuster, H.F. & Dluhy, R.A. (1989) Quanti­tative determination of conformational disor­der in the acyl chains of phospholipid bilayers by infrared spectroscopy. Biochemistry 28, 8934-8939.
  • 3. Maroncelli, M., Qi, S.P., Strauss, H.L. & Sny­der. R.G. (1982) Non polar con formers and the phase behavior of solids n-alkanes. J. Am. Chem. Soc•. 104, 6237-6247.
  • 4. Wang, C.C. & Pecora, R. (1980) Time-correla­tion function for restricted rotational diffu­sion. J. Chem. Phys. 72. 5333-5336.
  • 5. Devaux. P. & McConnell, H.M. (1972) Lateral diffusion in spin-labeled phosphatidylcholine multilayers. J. Am. Chem. Soc. 94, 4475- 4481.
  • 6. Vaz, W.L.C., Clegg, R.M. & Hallmann, D. (1985) Translational diffusion of lipids in liq­uid crystalline phase phosphatidylcholine multibilaycrs. A comparison of experiment with theory. Biochemistry 24, 781-786.
  • 7. Sackmann, E. (1995) Physical basis of self-or­ganization and function of membranes: Phys­ics of vesicles; in Structure and Dynamics of Membranes (Lipowsky, R. & Sackmann, E., eds.) pp. 213-304, Elsevier, Amsterdam.
  • 8. Meier. P., Ohmer, E. & Kothe, G. (1986) Mul- tipulse dynamic nuclear magnetic resonance of phospholipid membranes. J. Chem. Phys. 85, 3598-3614.
  • 9. Weisz, K., Grobner, G., Mayer, C., Stohrer, J. & Kothe, G. (1992) Deutcron nuclear mag­netic resonance study of the dynamic organi­zation of phospholipid/cholesterol mem­branes: Molecular properties and viscoelastic behavior. Biochemistry 31, 1100-1112.
  • 10. Pearlman, D.A., Case, D.A., Caldwell, J.C., Seibcl, G.L., Singh, U.C., Weiner, P.K. & Koll- man, P.A. (1991) AMBER 4.0. University of California, San Francisco.
  • 11. Vanderkooi, G. (1991) Multibilayer structure of dimyristoylphosphatidyl-choline dihydrate as determined by energy minimization. Bio­chemistry 30, 10760-10768.
  • 12. Pasenkiewic/.-Gierula, M., Takaoka, Y.. Miy- agawa, H.. Kitamura, K. & Kusumi, A. (1997) Hydrogen bonding of water to phosphatidyl­choline in the membrane as studied by a molecular dynamics simulation: Location, ge­ometry, and lipid-lipid bridging via hydrogen- bonded water. J. Phys. Chem. (in press).
  • 13. Jorgensen, W.L. & Tirado-Rives, J. (1988) The OPLS potential functions for proteins. Energy minimization for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657- 1666.
  • 14. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, K. & Klein, M L. (1983) Compari­son of simple potential functions for simulat­ing liquid water. J. Chem. Phys. 79. 926-935 (and references therein).
  • 15. Ryckaert, J.P., Cicotti, G. & Berendsen, H.J.C. (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-al- kanes. J. Comp. Phys. 22, 327-341.
  • 16. Egberts. E., Marrik, S.-J. & Berendsen, H.J.C. (1994) Molecular dynamics simulation of a phospholipid membrane. Eur. Biophys. J. 22, 432-436.
  • 17. Berendsen, H.J.C., Postma, J.P.M., van Gun- steren, W.F., DiNola, A. & Haak, J.R. (1984) Molecular dynamics with coupling to an ex­ternal bath. J. Chem. Phys. 81, 3684-3690.
  • 18. Pearson, R.H. & Pascher, I. (1979) The mo­lecular structure of lecithin dihydrate. Nature (London) 281,499-501.
  • 19. Pink, D.A., Green, T.J. & Chapman, D. (1980) Raman scattering in bilayers of saturated phosphatidylcholines. Experiment and the­ory. Biochemistry 19, 349-356.
  • 20. Moser, M., Marsh, D., Meier, P., Wassmer, K.-H. & Kothe, G. (1989) Chain configuration and flexibility gradient in phospholipid mem­branes. Biophys. J. 55. 111-123.
  • 21. Hubbell, W.L. & McConnell, Il.M. (1971) Mo­lecular motion in spin-labeled phospholipids and membranes. J. Am. Chem. Soc. 93, 314-326.
  • 22. Meier, P., Blume, A., Ohmes, E., Neugebauer. F.A. & Kothe, G. (1982) Structure and dynam­ics of phospholipid membranes: An electron spin resonance study employing biradical probes. Biochemistry 21, 526-534.
  • 23. Carlson, J.M. & Sethna, J.P. (1987) Theory of the ripple phase in hydrated phospholipid bilayers. Phys. Rev. A 36, 3359-3374.
  • 24. Pastor, R.W., Venable, R.M. & Karplus, M. (1988) Brownian dynamics simulation of a lipid chain in a membrane bilayer. J. Chem. Phys. 89, 1112-1127.
  • 25. Hauser, H., Pascher, I., Pearson, R.H. & Sun- dell. S. (1981) Preferred conformation and molecular packing of phosphatidylethanol- amine and phosphatidylcholine. Biochim. Biophys. Acta 650, 21-51.
  • 26. Buldt, G. & Wohlgemuth, R. (1981) The headgroup conformation of phospholipids in membranes. J. Membr. Biol. 58, 81-100.
  • 27. Seelig, J., Gaily, H.-U. & Wohlgemuth, R. (1977) Orientation and flexibility of the choline head group in phosphatidylcholine bi­layers. Biochim. Biophys. Acta 467, 109-119.
  • 28. Allegrini, P.R., Scharrenbui^, G, Haas, G.H. & Seelig, J. (1983) 2H- and 31P-NMR studies of bilayers composed of 1-acyllysophospha- tidylcholine and fatty acids. Biochim. Bio­phys. Acta 731, 448-455.
  • 29. Seelig, J. & Gaily, H.U. (1976) Investigation of phosphatidylethanolamine bilayers by deu­terium and phosphorus-31 nuclear magnetic resonance. Biochemistry 15, 5199--5204.
  • 30. Robinson, A.J., Richards, W.G., Thomas, P.J. & Hann, M.M. (1994) Head group and chain behavior in biological membranes: A molecu­lar dynamics computer simulation. Biophys. J. 67, 2345-2354.
  • 31. Yeagle, P L., Hutton, W.C.. Huang. C-h. & Martin, R.B. (1975) Headgroup conformation and lipid-cholesterol association in phospha-tidylcholine vesicles: A PI HI nuclear Over- hauser effect study. Proc. Nat. Acad. Sci. U.S.A. 72, 3477-3481.
  • 32. Yeagle, P.L., Hutton, W.C., Huang, C-h. & Martin. R.B.(1976) Structure in the polar head group region of phospholipid bilayers: AP { H| nuclear Overhauser effect study. Bio­chemistry 15, 2121-2124. 1978) Griffin, R.G., Powers, L. & Pershan, P.S. (1978) Head-group conformation in phospho­lipids: A phosphorus-31 nuclear magnetic- resonance study of oriented monodomain di- palmitoyl-phosphatidylcholine bilayers. Bio­chemistry 17, 2718-2722.
  • 34. Hauser, H., Guyer, W., Skrabal, P. & Sundell, S. (1980) Polar group conformation of phos­phatidylcholine. Effect of solvent and aggre­gation. Biochemistry 19, 366-373.
  • 35. Akutsu, H. (1981) Direct determination by Raman scattering of the conformation of the choline group in phospholipid bilayers. Bio­chemistry 20, 7359-7366.
  • 36. Nagle, J.F. (1976) Theory of lipid monolayer and bilayer phase transitions: Effect of headgroup interactions. J. Membr. Biol. 27, 233-250.
  • 37. Yeagle, P.L., Ilutton, W.C., Huang, C-h. & Martin, R.B. (1977) Phospholipid head-group conformations; Intermolecular interactions and cholesterol effects. Biochemistry 16. 4344 -4349.
  • 38. Shepherd, J.C. & Buldt, G. (1978) Zwitter- ionic dipoles as dielectric probe for investigat­ing head group mobility in phospholipid mem­branes. Biochim. Biophys. Acta 514, 83-94.
  • 39. Schindler. H. & Seelig, J. (1973) EPR spectra of spin labels in lipid bilayers. -J. Chem. Phys. 59, 1841-1850.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-b739221d-aece-45b5-ab46-b0089b9cb6c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.