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THE ENGESSER-SHANLEY MODIFIED THEORY
OF STABILITY OF THIN-WALLED CYLINDRICAL
RODS WITH EXAMPLE OF USE FOR STEEL ST 35

Krzysztof Murawski

Abstract: The Engesser-Shanley modified theory of thin-walled axially crushed
cylindrical rods is presented in the paper. The problems of critical loads in elasto-plastic
states have been considered. The plasticity ratio of critical transverse section has been
defined by value a-angle, which to slenderness ratio of rod is related. The reccived
theoretical results to the experience research effects of rods made of steel St 35 have been
compared.
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STABILITY OF RODS ACCORDING TO ENGESSER, KARMAN
AND SHANLEY HYPOTHESISES

The basic theory of slender rod lose stability in elastic state was worked out
through Euler [1744, 1759]. He introduced the concept of critical load and gave the
formula for critical force of axially crushed rod. The loss stability theory of crushed rod
in elasto-plastic state, basing on concept of tangent module, worked out Engesser [1889,
1895], Karman [1908, 1910] and Shanley [1947].

According to Engesser-Karman hypothesises, in critical cross-section of axially
crushed rod, being found in elasto-plastic state, there are two zones: squeezed —
deformed plastically on concave side of neutral layer of rod and tensioned — deformed
clastically on bossed side (Fig. 1A). From equilibrium of forces and of moments in
relation to neutral layer of rod, before losing of stability, drew out the conclusion, that
areas of triangles of tensioning and squeezing stresses have to be equal. Besides clastic
zone characterised with Young's module £ and plastic zone with so-called tangent
module E,, determined as Young's module from graph stress o —strain £, received
during standard tension test, but from non-linear range.
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Fig. 1. Axially crushed rod (A) and its critical cross-section (B) while losing of stability according
to Engesser-Karman hypothesises

Rys. 1. Osiowo Sciskany pret (A) i jego przekroj krytyczny (B) podezas utraty no$nosci wedlug
hipotezy Engessera- Karmana

Referring this hypothesises to case of cylindrical rod (Fig. 1B), where in critical
cross-section, v, and y, — are distances adequately from neutral layer to segment dA of
clastic and plastic zone, in moment of losing stability, can be expressed:

dA=t-R- do, y=R- (cosa —cosO), y»=R - (COSG —CoS O() (1)

where: R — the average radius of tube,
t — the wall thickness,
2a — angle describing plastic part critical cross-section,
A — area of critical cross-section.
The cquilibrium of forces from stresses, in relation to neutral layer, described with
formulas:
Vo
[4,0, d4; = _[_41 c,dA;, , 6, =—=-E
< p P
where: A, , A, — area adequately of tensioned and plastic part of critical transverse cross
section,

p — curvature radius of neutral layer.
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From Equations (1) and (2):
nE, — = (oijal — =
[=~-R-(coso.—cos8)-7- Rd® = jE-R-(cosG—cos o) - Rd® 3)
o oP

and after integrating:
Q_sina+(n—a)-cosa_ e

: 1+ 4
E sin oL — - cos tga—o

Function of Equation (4) is represented on Figure 2, from which is apparent, that it
has physical sense only for @ e (90°, 180°), because should be: 1 > E, /E > 0. At
a=90°is E, = E, i.e. that whole critical cross-section is in elastic state, what answers to
limiting slenderness ratio — A,. Would result from here, that for slenderness ratio
Alittle smaller than A, follows suddenly plasticization of half critical cross-section
(a=90°), and then for more and more smaller A plastic zone grows until gets angle
180° attaining full plastic state. On the base of research works observations has been
ascertained, that it is not consistent with reality, because the plastic area, described with
angle ¢, there is also for a < 90°.
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Fig. 2. Course of the functions: E,/E(a) (A) and Exx/E(a) (B) for axially crushed tube rods
appointed according to Engesser-Karman hypothesises

Rys. 2. Przebieg funkcji £,/E(a) (A) i Egx/E(ex) (B) dla osiowo Sciskanych pretow rurowych
wyznaczonych zgodnie z hipotezg Engessera-Karmana

The equilibrium of moments, in relation to neutral layer, has been described with
formula:

IAZGI'—VZ ddy +[4 6y -y dA ==P-y (5)

where y — distance from outside load line to neutral layer.
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After integrating:

I8 = = -si
F’~R3-tBa~sin4a]+§R3-1[(n—a)~(l+C0822a)+3s—1222}=—%1’~y (6)

and taking into consideration in critical cross-section Jj, J, — adequately axial moment

of inertia of tensioned and plastic part, has been received:
EJ,+EJ) _

Py @
p

Analysing differential equation of neutral layer deflection line relatively to outside

load line (on the assumption of little deformations j’ = — and of equivalent module Egx
p

existence) has been received neutral layer deflection line equation:
. EpgJ
Egge J-5+P-y=0 = —%—:-P-y (8)

After comparison of left sides of Equations (7) and (8), has been received formula
for equivalent module:
E,Jz = EJ)

Epg S )

After integrating differential Equation (8) has been received formula on critical
stress:
2
T

O EK =(x) -Egg (10)

Taking formula of Equation (4) has been determined value of equivalent module in
relation to Young's module as:

Sy 1 1 cos2a) 3-sin2a a l-a 3-sin 20
= et || o |+ —— |- —— |+] ==+ ——-cOs 200 + —————
% Totgo—a 2 4 TER: 4n

(an

How is apparent from Figure 3 course of this function has physical point only for
ae (90°, 138°) what results from acceptances of foundation, that areas of triangles of
tensioning and squeezing stresses have to be equal and from limitations of hypothesis to
little deformations. How is apparent function £, /E() is possible to apply in wider range
of a than Ep /E(«). Shanley took advantage of this putting in Equation (10) instead
Epx directly E,, what also was burdened with an error, and appointed course of function
E(A) on the ground of this formula at acquaintances from experiment the function
critical stress ok, — slenderness ratio A is rather theoretical. Especially wakes
reservations determining of function £,(4) for row of rods on the ground of non-linear
range of function of &) course, received during extension tests of one normative samples
[Biezina 1966; Wolmir 1967].
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STABILITY OF RODS IN OWN INVESTIGATION

In connection with above reservations has been conducted own analysis of stability
of thin-walled rods. First results of this were presented early [Murawski 1992]. Have
been made research works on tube which was crushed through ball and socket joints
with constants increase. Strains from strain gauges, have been presented on Figure 3.
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Fig. 3. Strains from strain gauges, placed in central cross-section of tube rod on two opposite
generating lines and appointed on this base a turnover of central segment of tube geometrical
central line (the tube rod weighted through ball and socket joints with constants increase of
charge)

Rys. 3. Odksztalcenia wzgledne otrzymane z tensometrow umieszczonych w srodkowym
przckroju na dwu przeciwleglych tworzacych i wyznaczony na tej podstawic obrot osi
geometrycznej tulei cylindrycznej (obciazanej przez przeguby stalym przyrostem obciazenia)

Results from this figure, that already little charges, next to 10% Py, cause distinct
turnover of centre line tube segment and testify to its deforming. It has been accepted
so, that losing of stability follows already at minimum charges, and for losing of
carrying capacity is responsible position of resultant (from superposition of
compressions and of bending) neutral layer of tube in relation to critical outline of
transverse section. On base of these observations it has been accepted, that in elastic
state losing of carrying capacity follows after exit resultant neutral layer from critical
transverse section, however in elasto-plastic state, after entry resultant neutral layer in
plastic zone. It has been accepted from here, that state of stresses in critical transverse
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section after loss of stability and before loss of carrying capacity, is as the result of
clean compressions and bending superposition (Fig. 4).
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Fig. 4. State of stresses after loss of stability in critical transverse section of axially crushed tube
according to own investigation. o, — stress from compressions, g, — stress from bending, o, —
normal stress (superposition of compressions and of bending); there are not shear stress in critical
transverse section

Rys. 4. Stan naprezen po utracie statecznosci w krytycznym przekroju poprzecznym rury
$ciskanej osiowo zgodnie z wlasng hipoteza: o, — naprezenie $ciskajace, o, — naprezenie gnace,
o, — napre¢zenie normalne (superpozycja naprezen Sciskajacych i gnacych); w krytycznym
przekroju poprzecznym nie wyst¢puja napr¢zenia gnace

As one can notice from drawing, in critical transverse section the most strenuous,
because of normal stresses, is extreme internal filament after concave rod side. Because
of clean compressions and bending superposition resultant neutral layer shifts, together
with growth of load, from central line toward concave, more weighted side of tube.
Together with growth of load, grow up stresses from bending, but also from
compressions, and the position of resultant neutral layer is as the effect of these stresses
participation specific game, what depends from the form of rod (thickset — slender).
State of stresses in critical transverse section of rod, before loss of carrying capacity, is
characterised with flow plastic part of section, in concave squeezed side, after stresses
rich yield stress. This results with additional decreasing of rod central line radius. On
Figure 5A the position of neutral layer in critical transverse section before loss of
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carrying capacity has marked with angle £ and position of plastic zone border — with
angle a. As it was stated before it, has been accepted, that loss of carrying capacity of
rod follows when resultant neutral layer, at force P, enters in plastic zone, that is
a =/ (Fig. 5B) and flowing material does not place already resistance against bending
(the lack of resisting moment).
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Fig. 5. State of stresses before (A) and in moment (B) of loss of carrying capacity in critical
transverse section of axially crushed tube

Rys. 5. Stan naprezen przed (A) i w momencie (B) utraty nosnosci w krytycznym przekroju
poprzecznym rury $ciskanej osiowo

For A, has been accepted, that in moment of loss of carrying capacity full critical
transverse section is in plastic state (¢ = 7). In case of A, whole critical transverse
section, in the moment of loss of carrying capacity, is in plastic state (a=0). The
position of resultant neutral layer, in the moment of loss of carrying capacity, changes
dependably on slenderness ratio. For the rod with slenderness ratio 4, the resultant
neutral layer covers the central line (a= 7, f= 7/2) and with 4, covers the edge of
critical transverse section outline (& =0, #= 0). For slenderness ratio between 4, and A,
the resultant neutral layer lies between the central line and the edge of critical transverse
section outline on concave side of rod (0 <@ <7z; 72 > 3 >0). After cutting the rod in
the critical cross-section and after investigation of state of stresses equilibrium of forces
has been qualified. The force P, is equalised by elastic force P and plastic force P,
(Fig. 5B). Therefore [Murawski 1992]:
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2P=Pkr_Pm_PH=0 == Pkr=Pm+PH (12)
EM:- Pkr',V—Plrl',vlzl—"PH'yH:O (13)
where:

PII ZGII'Allzo—H (T[“a)R 17 Pm =O—kr(il)'Aln=O-/u'(il)'a' Rt (14)

oy — limit of elasticity at compression (variable for different A and answering to
them ¢),
Ay — area of transverse section in elastic (plastic) state.

From here:

AR

Py 2-(n—0o) Rt 2-a-R-1 ( a
) A H 5o Rl kl( l) 2 m Rt o r( l)
(15)

If for 2, is attained Py, then Py(A) from range (4, 44) is attained for slenderness
ratio:

) =t )L
o a “gr
A=A, ——\A =1 = e e
ar 7[( gr 1) = Pl )”gr _)‘1 (16)
From here has been received:
5 )'gr =4 1
ok (2)=0y (/')+} = Joke ()= (2)] (17)
lgr — 4

The stress oy (4) has beenacknowledged as characteristic parameter for given
material and marked Re*. From researches has resulted, that function oj(A) is of first
degree, so received function oj,(4) is of second degree. The stress oy(4;) has been
acknowledged too as characteristic parameter and marked R"y . The linear function
o{ A), neglecting value A, has been described with formulas:

Oy (/): Rf,;" +(1—;/—][R;l _RZ"] ’ Rflu :ai-l()‘gr)=akr()'gr) (18)

g

Eu . . o e T
where R,;" — limit of elasticity practical in Euler's formula to determination Agr.
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Then:

2
o, (1)={1- i R;+R,',i TRE i (19)
A Age Jhe

After insertion the Euler's formula:
2 2
ot o B T 7 ]
Agr Agr Agr
o,.(1)= -2 R;+R,',-—)'— +E- "Ll (20)
}‘gr )'gr )‘t_?r
or:
o, (2) =R +|1-2 /R”E" HE R
At " n\ E " i Js

v olRE [ 0L R -
akr()‘)z l_;lt % ¥ RL,+RH-;r- g ek Rlll“)

These formulas are suitable to use on condition acquaintance of parameters:

=
a1

| —

*

* E . . 5
RL,,R,,, E, RH" or Ay Two first you should determine from the compression test of
thickset rod. The comparisons of graphs of theoretical function and of approximated

o . * *
functions from own researches are presented on Figure 6 (R, = 624.82 MPa, Ry =

= 422.86 MPa, E =211 000 Mpa, R5" =219.5 MPa). The differences of values of
those stresses functions vary with slenderness ratio but does not exceeds 11.4%.
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Fig. 6. Comparison of graphs of the theoretical function and of approximated functions from
researches
Rys. 6. Porownanie wykresow funkeji teoretycznych z aproksymowanymi funkcjami z badan
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ZMODYFIKOWANA TEORIA STATECZNOSCI ENGESSERA-SHANLAY’A
DLA CYLINDRYCZNYCH CIENKOSCIENNYCH PRETOW
Z PRZYKLADEM ZASTOSOWANIA DLA STALI ST35

Streszczenie: W pracy przedstawiono zmodyfikowang teori¢ Engessera-Shanlay’a w
odniesieniu  do osiowo S$ciskanych cienkosciennych pretow cylindrycznych.
Rozpatrywano problem obciazen krytycznych w stanach sprgzysto-plastycznych. Wplyw
uplastycznienia krytycznego przekroju poprzecznego okreslono katem «, ktory
odnoszono do smuklo$ci preta. Otrzymane teoretyczne wyniki poréwnano z wynikami
badan eksperymentalnych na prébkach ze stali St35.

Slowa kluczowe: statecznos¢, obciazenie kryrtczne, cienkoscienny, Engesser, Karman,

Shanley
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