PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 58 | 2 |

Tytuł artykułu

The occurrence, biodiversity and toxicity of Bacillus thuringiensis strains isolated from the insect pest Lymantria dispar [Poland]

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this investigation was to survey the occurrence, biodiversity, and toxicity of Bacillus thuringiensis strains originating from dead caterpillars of the forest pest, Lymantria dispar (Lepidoptera). Morphological, biochemical, and microscopic identification of isolates from the insects showed the presence of five different Bacillus species, including 2% of B. thuringiensis. Based on the biochemical profiles, the B. thuringiensis were determined to be B. thuringiensis finitimus-like and B. thuringiensis alesti-like bacilli. Both produced spherical inclusions composed of three or five protoxins. The molecular weights of these proteins varied from 20 to ca. 64 kDa. Mixtures of spores/inclusions of the B. thuringiensis were tested for their toxicity against larvae of Drosophila melanogaster. The mortality levels of the larvae caused by these spores and crystalline inclusions varied from 5 to 15%. The lethal doses (LD₅₀) of these isolates against D. melanogaster were 8.8 x 10¹² spores/ml for B. thuringiensisfinitimus and 1.3 x 10¹⁸ spores/ml for B. thuringiensis alesti.

Wydawca

-

Rocznik

Tom

58

Numer

2

Opis fizyczny

p.155-161,fig.,ref.

Twórcy

autor
  • University of Wroclaw, Przybyszewskiego 66/77, 51-148 Wroclaw, Poland

Bibliografia

  • Abbott S.W. 1928. A method of computing the effectiveness of an insecticide. J. Econom. Entomol. 18: 265-267.
  • Alberola T.M., S. Aptosoglou, M. Arsenakis, Y. Bel, G. Delrio, D.J. Ellar, J. Ferre, F. Granero, D.M. Guttmann, S. Koliais and others. 1999. Insecticidal activity of strains of Bacillus thuringiensis on larvae and adults of Bactrocera oleae Gmelin (Dipt. Tephritidae). J. Invert. Pathol. 74: 127-136.
  • Al-Momani F., M. Obeidat, I. Saadoun and M. Meqdam. 2004. Serotyping of Bacillus thuringiensis isolates, their distribution in different Jordanian habitats and patogenicity in Drosophila melanogaster. World J. Microbiol. Biotech. 20: 749-753.
  • Aronson A.I. and S. Yechiel. 2001. Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiol. Lett. 195: 1-8.
  • Bca S., G.H. Fleet and G.M. Heard. 2004. Occurrence and significance of Bacillus thuringiensis on wine grapes. Intern. J. Food Microbiol. 94: 301-312.
  • Bizzarri M.F. and A.H. Bishop. 2007. Recovery of Bacillus thuringiensis in vegetative form from the phylloplane of clover (Trifolium hyhridum) during a growing season. J. Invert. Pathol. 94: 38-47.
  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem. 72: 248-254.
  • Crickmore N., D.R. Zeigler, J. Feitelson, E. Schnepf, J. van Rie, D. Lereclus, J. Baum and D.H. Dean. 1998. Revision of the Nomenclature for the Bacillus thuringiensis Pesticidal Crystal Proteins. Microb. Mol. Biol. Rev. 62: 807-821.
  • Doroszkiewicz W. and E. Lonc. 1999. Biodiversity of Bacillus thuringiensis strains in the phylloplane and soil of Lower Silesia region (Poland). Acta Microbiol. Pol. 48: 355-361.
  • Espinasse S., M. Gohar, J. Chafaux, C. Buisson, S. Perchat and V. Sanchis. 2002. Correspondence of high levels of beta-exotoxin I and the presence of cry 1B in Bacillus thuringiensis. Appl. Environ. Microbiol. 68: 4182-4186.
  • Frederiksen K., H. Rosenquist, K. Jorgensen and A. Wilcks. 2006. Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis-based insecticides on fresh fruits and vegetables. Appl. Environ. Microbiol. 72: 3435-3440.
  • Glare T.R. and M. O'Callaghan. 2000. Bacillus thuringiensis: Biology, Ecology and Safety. John Wiley and Sons, Chichester.
  • Guz K., J. Kucińska, E. Lonc and W. Doroszkiewicz W. 2005. Differentiated pattern of protein composition of crystalline inclusions of newly isolated Bacillus thuringiensis strains from Silesia in Poland. Pol. J. Microbiol. 54: 263-269.
  • Guz K. and W. Doroszkiewicz. 2005. Environmental Bacillus thuringiensis strains and their practical application (in Polish). Forum Mikrobiologów Wrocławskich. PAN, Wroclaw, 1: 93-105.
  • Hernandez C.S., R. Andrew, Y. Bel and J, Ferre. 2005. Isolation and toxicity of Bacillus thuringiensis from potato-growing areas in Bolivia. J. Invert. Pathol. 88: 8-16.
  • Ibara J.E., C. del Rincon, S. Orduz, D. Noriego, G. Bentintede, R. Movinerat, L. Regis, C. de Oliveire, H. Lanz, M.H. Rodriguez and others. 2003. Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species. Appl. Environ. Microbiol. 69: 5269-5274.
  • Ichimatsu T., E. Mizuki, H. Nishimura, T. Akao, H. Saitoh, K. Higuchi and M. Ohba. 2000. Occurrence of Bacillus thuringiensis in fresh water of Japan. Curt: Microbiol. 4: 217-220.
  • Jensen G.B., P. Larsen, B.L. Jacobsen, B. Madsen, L. Smidt and L. Andruo. 2002. Bacillus thuringiensis in fecal samples from greenhouse worker after exposure to B. thuringiensis-based pesticides. Appl. Environ. Microbiol. 68: 4900-4905.
  • Karamanlidou G., A.F. Lambropoulos, S.I. Koliais, T. Manousis, D. Ellar and C. Kastritsis. 1991. Toxicity of Bacillus thuringiensis to laboratory populations of the olive fruit fly (Dacus oleae). Appl. Environ. Microbiol. 57: 2277-2282.
  • Khyami-Horani H., M. Hajaij and J.F. Charles. 2003. Characterization of Bacillus thuringiensis set: jordanien (serotype H71), a novel serovariety isolated in Jordan. Curt: Microbiol. Al: 26-31.
  • Konecka E., A. Kaznowski, J. Zimnicka and K. Zimnicki. 2007. Molecular and phenotypic characterization of Bacillus thuringiensis isolated during epizootics in Cydia pomonella L..J. Invert. Pathol. 94: 56-63.
  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-686.
  • Lecadet M.M., E. Frachon, V.C. Dumanoir, H. Ripouteau, S. Hamon, P. Laurent and I. Thiery. 1999. Updating the H-antigen classification of Bacillus thuringiensis. J. Appl. Microbiol. 86: 660-672.
  • Lonc E., K. Guz and W. Doroszkiewicz. 2006. Microbiological insecticides and organic agriculture (in Polish). Ogólnopolski Miesięcznik Ekologiczny, Ekonatura 8: 12-15.
  • Lonc E., W. Doroszkiewicz, M.J. Klowden, K. Rydzanicz and K. Gałgan. 2001. Entomopathogenic activities of environmental isolates of Bacillus thuringiensis against dipteran larvae. J. Vec. Ecol. 26: 15-26.
  • Lonc E., M.M. Lacadet, T.M. Lachowicz and E. Panek. 1997. Description of Bacillus thuringiensis wratislaviensis (H-47), a new serotype originating from Wrocław (Poland), and other Bt soil isolates from the same area. Lett. Appl. Microbiol. 24: 474-478.
  • Mohammedi S., S.B. Subramanian, S. Yan, R.D. Tyagi and J.R. Valero. 2006. Molecular screening of Bacillus thuringiensis strains from wastewater sludge for biopesticide production. Process Biochem. 41: 829-835.
  • Quesach M.E., E. Gracia-Tovar, O. Valvada-Gracia and Skutiago-Alvarez. 2004. Isolation, geographical diversity and insecticidal activity of Bacillus thuringiensis from soils in Spain. Microbiol. Rev. 156: 59-71.
  • Porcar M. and P. Caballero. 2000. Molecular and insecticidal characterization of a Bacillus thuringiensis strains isolated during a natural epizootic. J. Appl. Microbiol. 89: 309-316.
  • Rosenquist H., L. Schmidt, S.R. Andersen, G.B. Jensen and A. Wilcks. 2005. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiol. Lett. 250: 129-136.
  • Saitoh H., K. Higuchi, E. Mizuki, S.H. Hwang and M. Ohba. 1998. Characterization of mosquito larvacidal parasporal inclusions of a Bacillus thuringiensis serovar higo strain. J. Appl. Microbiol. 84: 883-888.
  • Schnepf E., N. Crickmore, J. Van Rie, D.L. Baum, J. Feitelson, R. Zeigler and D.H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806.
  • Siegel J. P. 2001. Mammalian safety of Bacillus thuringiensis-based insecticides. J. Invert. Pathol. 77: 13-21.
  • Sneath P.H.A. 1986. The genus Bacillus. In Bergey 's Mannual of Systematic Bacteriology, Baltimore, MD: Wiliams and Wilkins.
  • Święcicka I. and J. Mahillon. 2005 The clonal structure of Bacillus thuringiensis isolates from north-east Poland does not correlate with their cry gene diversity. Appl. Environ. Microbiol. 7: 34-39.
  • Święcicka I., K. Fiedoruk and G. Bednarz. 2002. The occurrence and properties of Bacillus thuringiensis isolated from free-living animals. Lett. Appl. Microbiol. 34: 194-198.
  • Uribe D., W. Martinez and J. Ceron. 2003. Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Columbia. J. Inter. Pathol. 82: 119-127.
  • Wang J., A. Boets, J. Van Rie and G. Ren. 2003. Characterization of cry1, cry2 and cry9 genes in Bacillus thuringiensis isolates from China. J. Invert. Pathol. 82: 63-71.
  • Zahner V., D.A. Cabra, A.H. Reguq-Mangia, L. Rabinovitch, G. Moreau and D. McIntosh. 2005. Distribution of genes encoding putative factors and fragment length polymorphisms in the vrrA gene among Brazilian isolates of Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 71: 8107-8114.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-b1eb1579-f076-4adb-8996-1134dbd10a40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.