PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 62 | 12 |

Tytuł artykułu

Rewers trojjodotyronina - synteza i rola

Autorzy

Warianty tytułu

EN
Reverse-triiodothyronine - synthesis and role

Języki publikacji

PL

Abstrakty

EN
The article discusses proposed physiological effects of reverse T3 (rT3), its synthesis and degradation. Until recently rT3 has been considered to be a metabolically inactive hormone present in high concentrations during the neonatal period and in various stress situations, including neoplasm development. Reverse T3 given to animals with unchanged hormonal homeostasis, especially of hormones participating in glucose and lipids metabolism seems to lack any metabolic effect. A fluctuation in circulating glucose and free fatty acids (FFA) levels is probably necessary for rT3 activity. In contrast to T3, rT3 acts hypo-metabolically by decreasing oxygen consumption, presumably as a result of reduced glucose and FFA utilization. A short latent period indicates that the action of rT3 is prevalently non-genomic. The article discusses the issue of low T3 syndrome or nonthyroidal syndrome which affects approximately 70% of hospitalized patients. The two hormones responsible for developing low T3 and high rT3 syndrome are: glucocorticoids . by inhibiting 5' deiodination and T3 synthesis followed by suppressed rT3 degradation, and adrenaline . by stimulating 5 deiodination followed by enhanced degradation of T3 and stimulated synthesis of rT3. Low T3 syndrome correlates with various cytokines. Cytokines treatment leads to the development of low Ta syndrome. In stress situations rT3 enhances the rise of glucose and FFA, whereas this rise is attenuated by rT3 when stress hormones i.e. glucocorticoids or catecholamine, are administered exogenously. We speculate that the molecular action of rT3 may be directed towards reducing T3 synthesis. It has been stated that equimolar concentrations of rT3 suppress 5.deiodination and synthesis of T3 with concomitant lower rT3 degradation. This leads to the development of T3 deficiency. T3 is a prohormone for synthesizing 3,5-diiodothyronine which, in turn, is necessary for binding and activating the cytochrom-c submit Va (Cyto-cVa) followed by increased oxidative phosphorylation and synthesis of ATP. Contrary to T3, rT3 decreases the ATP: ADP ratio. Finally, it is worth mentioning that the stimulatory-growth effect of rT3 on some tumor models in vitro was the most potent of all the various thyroid analogues. It may be suggested that lowered ATP reduces the energy supply of infected cells and thus suppresses the immune response.

Wydawca

-

Rocznik

Tom

62

Numer

12

Opis fizyczny

s.1363-1365,rys.,bibliogr.

Twórcy

autor
  • Akademia Rolnicza, al.Mickiewicza 24/28, 30-059 Krakow

Bibliografia

  • 1.Abdel-Fattah K. J., Bobek S., Pietras M., Sechman A., Niezgoda J.: Hypometabolic effect of 3,3',5'-triiodothyronine in chickens: interaction with hypermatabolic effect of 3,5,3'-triiodothyronine. Gen. Comp. Endocrinol. 1990, 77, 9-14.
  • 2.Abdel-Fattah K. J., Bobek S., Sechman A.: Serum pattern of thyroxine (T4 ), 3,3',5-triiodothyronine (T3 ) and 3,3’,5'-triiodothyronine (rT3 ) in fed and fasted cocks following TRH stimulation. J. Vet. Med. 1991, 38A, 401-408.
  • 3.Abdel-Fattah K. J., Bobek S., Sechman A., Kugiel M., Niezgoda J.: Food deprivation of domestic fowls affects oxygen consumption, plasma glucose, free fatty acids and thyroid hormones. Acta Agr. et Silv. 1992, 30, 53-64.
  • 4.Basset J. H. D., Harvey C. B., Williams G. R.: Mechanism of thyroid hormone receptor-specyfic nucler and extra nuclear actions. Mol. Cell. Endocrinol. 2003, 213, 1-11.
  • 5.Bobek S., Sechman A.: Wp³yw rewers trójjodotyroniny na zakażenie myszy Pasteurella multocida. Medycyna Wet. 1996, 52, 402-403.
  • 6.Bobek S., Sechman A., Wieczorek E., Wroñska-Fortuna D., Koziec K., Niezgoda J.: Reverse triiodothyronine (rT3 ) enhances hyperglycemic and lipemic effect of heat-stress in chickens. Horm. Metab. Res. 1997, 29, 252-254.
  • 7.Bobek S., Niezgoda J., Sechman A.: Lipopolysaccharide-induced alteration in plasma glucose, free fatty acids and thyroid hormones are modified by exogenous reverse 3,3’,5'-triiodothyronine (rT3 ). Acta Agr. et Silv. Zoot. 2000, 38, 49-56.
  • 8.Bobek S., Sechman A., Niezgoda J., Jacek T.: Reverse 3,3’,5’-triiodothyronine (rT3 ) influences the hyperglycemia in chickens induced by dexamethasone and exogenous glucose; Lack of effect in hyperglycemia elicited by adrenaline. Rocz. Nauk Zoot., Supl. 2001, z. 12, 13-18.
  • 9.Burger A. G., O’Connell M., Scheidegger K., Woo R., Danforth E. J.: Monodeiodination of triiodothyronine and reverse triiodothyronine during low and high calorie diets. J. Clin. Endocrinol. Metab. 1987, 65, 829-835.
  • 10.Cabello G., Wrutniak C.: Thyroid function in the newborn lamb. Physiological approach of the mechanisms inducing the changes in plasma thyroxine, free thyroxine and triiodothyronin concentrations. J. Develop. Physiol. 1990, 13, 25-32.
  • 11.Christopherson R. J., Thompson J. R., Hammond V. A., Hills G. A.: Effects of thyroid status on plasma adrenaline and noradrenaline concentrations in sheep during acute and chronic cold exposure. Can. J. Physiol. Pharmacol. 1978, 56, 490-496.
  • 12.Coughtrie M. W., Sharp S., Maxwell K., Innes N. P.: Biology anf function of the reversible sulfation pathway catalysed by human sulfotransferases and sulfatases. Chem. Biol. Interact. 1997, 109, 3-27.
  • 13.Darras V. M., Van der Geyten S., Kühn E. R.: Thyroid hormone metabolism in poultry. Biotechnol. Agron. Soc. Environ. 2000, 4, 13-20.
  • 14.Decuypere E., Kühn E. R.: Thyroid hormone physiology in Galliformes: age and strain related changes in physiological control. Amer. Zool. 1988, 28, 401-415.
  • 15.Dutkowsky J. P., Smith R. A., Calandruccio R. A., Carnesale P. G.: Effect of fetal thyroid hormone (RT3 ) on sarcoma cells in culture. J. Orthop. Res. 1993, 11, 379-385.
  • 16.Guillermo E.: Euthyroid sick syndrome. South Med. J. 2002, 95, 506-513.
  • 17.Kaiser C. A., Goumaz M. O., Burger A. G.: In vivo inhibition of the 5'-deiodinase type II in brain cortex and pituitary by reverse triiodothyronine. Endocrinology 1986, 119, 762-770.
  • 18.Kobayashi A., Shimazaki M., Kuwahara H., Ohashi H., Hashimoto R., Inoue A., Hamada N., Morii H., Shimazu A.: Nuclear binding sites for reverse triiodothyronine in human placenta. Osaka City Med. J. 1989, 35, 137-144.
  • 19.Langer P., Gschwendtowa K.: Acute changes in biliary excretion of reverse triiodothyronine in rats after insulin-induced hypoglycemia: effect of glucose verapamil, cycloximide and actinomycin. Europ. J. Endocrinol. 1995, 132, 618- 621.
  • 20.LoPresti J. S., Eigen A., Kaptein E., Anderson K. P., Spencer C. A., Nicololl J. T.: Alteration in 3,3',5'-triiodothyronine metabolism in response to propylthiomacil, dexamethasone and thyroxine administration in man. J. Clin. Invest. 1989, 84, 1650-1656.
  • 21.Madsbad S.: Short-term changes in levels of circulating T3 and reverse T3 in type 1 (insulin-dependent) diabetic patients. Diabetology 1983, 24, 137-138.
  • 22.Mitchell A. M., Manley S. W., Rowan K. A., Mortimer R. H.: Uptake of reverse T3 in human choriocarcinoma cell line JAR. Placenta 1999, 20, 65-70.
  • 23.Nauman A., Kamiñska T., Herbaczyñska-Cedro A.: In vivo and in vitro effects of adrenaline on conversion of thyroxine to reverse-triiodothyronine in dog liver and heart. Eur. J. Clin. Invest. 1980, 10, 189-192.
  • 24.Nowak G., Œlebodziñski A.: Extrathyroidal conversion of thyroxine to 3,5,3'- -triiodothyronine (T3 ) and 3,3',5'-triiodothyronine (rT3 ) and its contribution to total triiodothyronines production rates in fed and food restricted piglets. J. Vet. Med. A 1986, 33, 337-348.
  • 25.Okamoto R., Leibfritz D.: Adverse effect of reverse triiodothyronine on cellular metabolism as assessed by H and 31P NMR spectroscopy. Res. Exp. Med. 1997, 197, 211-217.
  • 26.Pearce C. J., Byfield P. G., Veall N., Himsworth R. L.: Iodothyronine kinetics in the rabbit: an experimental model. J. Endocrinol. 1985, 106, 87-94.
  • 27.Pezzi C., Accorsi P. A., Vigo D., Govoni N., Gaiani R.: 5'-deiodinase activity and circulating thyronines in lactating cows. J. Dairy Sci. 2003, 86, 152-158.
  • 28.Roche J., Michel R., Nunez J.: Sur la presence de la 3,3',5'-triiodothyronine dans le sang de rat. C. R. Seances Soc. Biol. Fil. 1956, 150, 20-24.
  • 29.Romero R., Casanova B., Pulido N., Suarez A. J., Rodriguez E., Rovira A.: Stimulation of glucose transport by thyroid hormone in 3T3-L1 adipocytes: increased abundance of GLUT1 and GLUT4 glucose transporter protein. J. Endocrinol. 2000, 164, 187-195.
  • 30.Segal J.: A rapid extranuclear effect of 3,5,3'-triiodothyronine on sugar uptake by several tissues in the rat in vivo. Evidence for a physiological role for the thyroid hormone action at the level of the plasma membrane. Endocrinology 1989, 124, 2755-2764.
  • 31.Smallridge R., Wartofsky L., Desjardins R., Burman K.: Metabolic clearens and production rates of 3,3',5'-triiodothyronine in hyperthyroid, euthyroid and hypothyroid subjects. J. Clin. Endocrinol. Metab. 1978, 47, 345-349.
  • 32.Stouthard J. M. L., Van der Poll T., Endert E., Bakker P. J. M., Veenhof C. H. N., Sauerwein H. D., Romijn J. A.: Effects of acute and chronic interleukin-6 administration on thyroid hormone metabolism in humans. J. Clin. Endocrinol. Metab. 1994, 79, 1342-1346.
  • 33.Wiersinga W. M., Boelen A.: Thyroid hormone metabolism in nonthyroidal illness. Curr. Opin. Endocrinol. Diabetes 1997, 3, 422-427.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-af3df3fc-75e1-41b1-b468-19a5691743dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.