PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 42 | 4 |

Tytuł artykułu

Molecular modeling of singlet-oxygen binding to anthraquinones in relation to the peroxidating activity of antitumor anthraquinone drugs

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Anthraquinone derivatives are important anti-cancer drugs possessing, however, undesirable peroxidating and, in consequence, cardiotoxic properties. This results from the mediation by these compounds of the one-electron reduction processes of the oxygen molecule, which produces the highly toxic superoxide anion radical and other active oxygen species. This article summarizes the results of our studies on the molecular aspects of the mechanism of anthraquinone-mediated peroxidation which were carried out using enzymatic-assay, electrochemical, and quantum-mechanical methods.

Wydawca

-

Rocznik

Tom

42

Numer

4

Opis fizyczny

p.445-456,fig.

Twórcy

autor
  • University of Gdansk, J.Sobieskiego 18, 80-952 Gdansk, Poland
autor
autor
autor
autor
autor
autor
autor
autor

Bibliografia

  • 1. Lown, J.W. (1993) Discovery and development of anthracycline antitumor antibiotics. Chem. Soc. Rev. 165-176.
  • 2. Myers, C.E., Mimnaugh, E.G., Yeh, G.C. & Sinha, B.K. (1988) Biochemical mechanisms of tumor cell kill by the anthracyclines; in Anthra­cycline and Anthracenedione-Based Anti-Cancer Drugs (Lown, J.W., ed.) pp. 527-569, Elsevier, Amsterdam.
  • 3. Arcamone, F. (1984) Antitumor anthracyclines: recent development. Med. Res. Rev., 4,153-160.
  • 4. Bachur, N.R., Gordon, S.L. & Gee, M.V. (1978) A general mechanism for microsomal activation of quinone anticancer agents to free radicals. Cancer Res. 38,1745-1752.
  • 5. Doroshow, J.H. (1983) Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res. 43,460-472.
  • 6. Lown, J.W. (1983) The mechanism of action of quinone antibiotics. Mol. Cell. Biochcm. 55, 17-27.
  • 7. Doroshow, j.H. & Davies, K.J.A. (1986) Redox cyclic of anthracyclines in cardiac mito­chondria./. Biol. Chem. 261,3068-3074.
  • 8. Davies, K.J.A. & Doroshow, J.H. (1986) Redox cycling of anthracyclines by cardiac mito­chondria./. Biol. Chem. 261,3060-3067.
  • 9. Novak, R.F., Kharasch, E.D., Frank, P. & Runge- Morris, M. (1988) Anthracyclines, anthra- cenediones and anthrapyrazoles: comparison of redox cycling activity and effects on lipid pero­xidation and prostaglandin production; in Anthracycline and Anthracenedione-Based Anticancer Drugs (Lown, J.W., ed.) pp. 475-526, Elsevier, Amsterdam.
  • 10. Mian, M., Frata, D., Rainaldi, G., Sim, S„ Mariani, T., Benetti, D. & Gervasi, P.G. (1991) Superoxide anion production and toxicity in V79 cells of six hydroxy-anthraquinones. Anticancer Res. 11,1071-1076.
  • 11. Peters, J.H., Gordon, G.R., Kashiwase, D., Lown, J.W., Yen, S.F. & Plambeck, J.A. (1986) Redox activities of antitumor anthracyclines deter­mined by microsomal oxygen consumption and assays for superoxide anion and hydroxyl radical generation. Biochcm. Pharmacol. 35, 309- -316.
  • 12. Acton, E. (1980) N-alkylation of anthracyclines; in Anthracyclines and their Development (Crooke, S.T. & Reich, S.D., eds.) p. 15, Academic Press, New York.
  • 13. Halliwell, B. & Gutteridge, J.M.C. (1985) Free Radicals in Biology and Medicine. Clarendon Press, Oxford.
  • 14. Mi ma ugh, E.G., Trush, M.A. «St Gram, T.M. (1981) Stimulation by adramycin of rat heart and liver microsomal NADPH-dependent lipid peroxidation. Biochem. Pharmacol. 30, 2797- -2804.
  • 15. Tarasiuk, J. Garnier-Suillerot, A. & Borowski, E. (1989) Lack of competition between cytochrome c and anthraquinone type drugs for the reduc­tive sites of NADH dehydrogenase. Biochem. Pharmacol. 38,2285-2289.
  • 16. Bachur, N.R., Gordon, S.L., Gee, M.V. & Kon, H. (1979) NADPH cytochrome P-450 reductase ac­tivation of quinone anticancer agents to free radicals. Proc. Natl. Acad. Sci. U.S.A. 76,954-957.
  • 17. Chesis, PL., Levin, D.E., Smith, M.T., Ernster, L. & Ames, B.N. (1984) Mutagenicity of quinones: pathways of metabolic activation and deto­xification. Proc. Natl. Acad. Sci. U.S.A. 81,1696- -1700.
  • 18. Tempczyk, A., Tarasiuk, J., Ossowski, T. & Borowski, E. (1988) An alternative concept of the peroxida ling ability of anthracyclineanti-tumor antibiotics and anlhracenodiones. Anti-Cancer Drug Design 2, 371-385.
  • 19. Carmichel, A. Mossoba, M.M. & Riesz, P. (1983) Photogeneration of superoxide by adriamycin and daunomycin. FEBS Lett. 164, 401-405.
  • 20. Zweier, J.L. (1983) Induction of O2 by iron- -adriamycin. /. Biol. Chem. 259, 6056-6058.
  • 21. Gianni, L., Zweier, J.L., Levy, A. & Myers, C.E. (1985) Characterization of the cycle of iron-me­diated electron transfer from adriamycin to mo­lecular oxygen. /. Biol. Chem. 260, 6820-6826.
  • 22. Lissi, E.A., Hncinas, M., Lemp, E. & Rubio, M.A. (1993) Singlet oxygen O2 (JAg) bimolecular processes. Solvent and comparlmentalization effects. Chem. Rev. 93, 699-723.
  • 23. Tarasiuk, J., Liwo, A., Wojtkowiak, S., Dziedu- szycka, M., Tempczyk, A., Gamier- Suillerot, A., Marlelli, S. & Borowski, E. (1991) Molecular de­terminants of singlet oxygen binding by anthra- quinones in relation to their redox cycling acti­vity. Anti-Cancer Drug Design 6, 399-416.
  • 24. Jeziorek, D., Dyl, D., Liwo, A., Woznicki, W., Tempczyk, A. & Borowski, E. (1992) A theore­tical study of the mechanism of oxygen binding by model anthraquinones. Part I. Quantum me­chanical evaluation of the oxygen-binding sites of 1,4-hydroquinone. Anti-Cancer Drug Design 7,451^61.
  • 25. Jeziorek, D., Dyl, D., Liwo, A., Woznicki, W., Tempczyk, A. & Borowski, E. (1993) A theo­retical study of the mechanism of oxygen bin­ding by model anthraquinones. Part II. Quan- tum-mechanical studies of the energetics of oxy­gen binding to model anthraquinones. Anti- -Cancer Drug Design 8, 223-235.
  • 26. Jeziorek, D., Dyl, D., Liwo, Av Ossowski, T. & Woznicki, W. (1994) Enthalpy of oxygen addition to anthraquinone derivatives determines their ability to mediating NADH oxidation. Anti-Cancer Drug Design 9, 435-448.
  • 27. Sawyer, D.T. & Nanni, E.J. (1982) Redox che­mistry of dioxygen species and their chemical reactivity; in Oxygen and Oxy-Radicals in Che- mistry and Biology (Rodgers, M.A.J. & Powers, E.L., eds.) pp. 15-44, Academic Press, New York.
  • 28. Schiffrin, D.J. (1983) The electrochemistry of oxygen; in Electrochemistry (Pletcher, D., ed.) vol. 8, chapter 4, The Chemical Society, Burlington House, London.
  • 29. Sawyer, D.T., Chlericato, G., Angelis, C.T., Nanni, E.J. & Tsuchiya, T. (1982) Effects of media and electrode materials on the electrochemical reduction of dioxygen. Anal. Chem. 54, 1720- -1724.
  • 30. Clough, R.L., Yee, B.G. & Foote, C.S. (1979) Che­mistry of singlet oxygen. 30. The unstable pri­mary product of tocopherol photooxidation. /. Am. Chem. Soc. 101, 683-686.
  • 31. Dowd, P., Ham, S.W. & Geib, S.J. (1991) Me­chanism of action vitamin K. J. Am. Chem. Soc. 113, 7734-7743.
  • 32. Jensen, F. & Foote, C.S. (1987) Chemistry of sin­glet oxygen — 48. Isolation and structure of the primary product of photooxygenation of 3,5- -di-t-butyl catechol. Photochem. Photobiol. 46, 325-330.
  • 33. Kharasch, M.S. & Joshi, B.S. (1957) Reactions of hindered phenols. II. Base-catalyzed oxidations of hindered phenols. /. Org. Chem. 22, 1439- -1443.
  • 34. Thomas, M.J. & Foote, C.S. (1978) Chemistry of singlet oxygen — XXVI. Photooxygenation of phenols. Photochem. Photobiol. 27, 683-693.
  • 35. Adam, W., Arias, L.A., Zahn, A., Zinner, K., Peters, JK., Peters, E.-M. & von Schnering, H.G. (1982) X-ray structural parameters and the thermal stability of 1,2-dioxethanes. Tetrahedron Lett. 23,3251-3254.
  • 36. Adam, W., Peters, E.-M., Peters, K., Platsch, H„ Schmidt, E., von Schnering, H.G. & Takayama, K. (1984) Synthesis, thermal stability, and che- miluminescence properties of the dioxethanes derived from 1,4-dioxine. /. Org. Chem. 49,3920- -3928.
  • 37. Jefford, C.W. (1993) The photo-oxygenation of olefins and the role of zwitterionic peroxides. Chem. Soc. Rev. 59-66.
  • 38. Harding, L.B., Goddard III, W.A. (1980) The me­chanism of the ene reaction of singlet oxygen with olefins. J. Am. Chem. Soc. 102,439-449.
  • 39. Gerard, M. & Dufraisse, C. (1935) Dissociable organic oxides and anthracenic structure. A photooxide of anthracene. C.R. Acad. Sci. 201, 428-430.
  • 40. Andreoni, A., Land, E.J., Malatesta, V., McLean, A.J. & Truscott, T.G. (1989) Triplet state charac­teristics and singlet oxygen generation pro­perties of anthracyclines. Biochim. Biophys. Acta 990,190-191.
  • 41. Gàl, D. (1994) Hunt for singlet oxygen under in vivo conditions. Biochem. Biophys. Res. Commun. 202,10-16.
  • 42. Chin, S., Clementi, E., Cornogiu, G., Dupuis, M., Frye, D., Logan, D., Mohanty, A. & Sonnad, V. (1990) MOTECC-89 Modern Techniques in Com­putational Chemistry; IBM Corporation, Center for Scientific & Engineering Computations, Kingston, NY, U.S.A.
  • 43. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., El­bert, S.T., Gordon, M.S., Jensen, J .J., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M. & Montgomery, J.A. (1993) Ge­neral Atomic and Molecular Electronic Struc­ture System. J. Comput. Chem. 14,1347-1363.
  • 44. Stewart, J.J.P. (1990) MOPAC - A semiempirical rrolecular orbital program. J. Comput .-Aided Mol. Design 4,1-104.
  • 45. Stewart, J.J.P. (1993) MOPAC 93.00 Manual. Fujitsu Limited, Tokyo, Japan.
  • 46. Weiss, H., Friedrich, T., Hofhaus, G. & Preis, D. (1991) The respiratory-chain NADH dehydro­genase (complex I) of mitochondria. Eur. ]. Biochem. 197,563-576.
  • 47. Tarasiuk, J., Garnier-Suillerot, A., Stefariska, B. & Borowski, E. (1992) The essential role of an- thraquinones as substrates for NADH dehy­drogenase in their redox cycling activity. Anti-Cancer Drug Design 7, 329-340.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-ae71b95c-f931-452d-9264-b18d7dfa7ff3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.