PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 53 | 1 |

Tytuł artykułu

Activities of synthetic peptides against human pathogenic bacteria

Warianty tytułu

Języki publikacji

EN

Abstrakty

The increasing, problem of antibiotic resistance among pathogenic bacteria requires development of new antimicrobial agents. Synthesis and experimental application of the hybrids peptides may be one of the interesting possibilities in antimicrobial treatment. The aim of the present investigation is to determinate in vitro activities of two synthetic peptide amides: cecropin-melittin hybrid peptide (CAMEL) and protegrin analogue (IB-367) against control strains and multi-resistant clinical isolates. Antimicrobial activities were measured by MIC and MBC. The tested strains were susceptible to the peptides at concentrations in the range of 1 to 32 ug ml⁻¹.

Wydawca

-

Rocznik

Tom

53

Numer

1

Opis fizyczny

p.41-44,ref.

Twórcy

autor
  • Provincial Hospital of Gdansk, Gdansk, Poland
autor
autor
autor
autor
autor

Bibliografia

  • Andreu D., J. Ubach, A. Boman, B. Wahlin, D. Wade, R.B. Merrifield and H.G. Boman. 1992. Shortened cecropin A-melittin hybrids. Significant size reduction retains potent antibiotic activity. FEBS Lett. 296: 190-194.
  • Bedenic B. and Z. Zagar. 1998. Extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae from Zagreb, Croatia. J. Chemother. 10: 449-459.
  • Berger-Bachi B. 2002. Resistance mechanisms of gram-positive bacteria. Int. J. Med. Microbiol. 292: 27-35.
  • Chen J., T.J. Falla, H. Liu, M.A. Hurst, CA. Fujii, D.A. Mosca, J.R. Embree, D.J. Loury, P.A. Radel, C.Cheng Chang, L. Gu and J.C. Fiddes. 2000. Development of protegrins for the treatment and prevention of oral mucositis: structure-activity relationships of synthetic protegrin analogues. Biopolymers 55: 88-98.
  • Chmiel D. 2001. Mode of action of antimicrobial peptides. Adv. Cell Biol. 16: 261-273.
  • Christensen T. 1979. Qualitative test for monitoring coupling completeness in solid phase peptide synthesis using chloranil. Acta Chem. Scand. B, 33: 763-776.
  • Fields G.B. and R.L. Noble. 1990. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Peptide Protein Res. 35: 161-214.
  • Fraimow H.S. and E. Abrutyn. 1995. Pathogens resistant to antimicrobial agents. Epidemiology, molecular mechanisms, and clinical management. Infect. Dis. Clin. North. Am. 9: 497-530.
  • Fuchs P.C., A.L. Barry and S.D. Brown. 1998. In vitro antimicrobial activity of MSI-78, a magainin analog. Antimicrob. Agents. Chemother. 35: 45-53.
  • Gabay J.E. 1994. Ubiquitous natural antibiotics. Science 264: 373-374.
  • Ganz T. and R.I. Lehrer. 1999. Antibiotic peptides from higher eucaryotes and applications. Mol. Med. Today 5: 292-297.
  • Ge Y., D.L. MacDonalds, K.J. Holroyd, C. Thornsberry, H. Wexler and M. Zasloff. 1999. In vitro antibacterial properties of Pexiganan, an analog of magainin. Antimicrob. Agents. Chemother. 43: 782-788.
  • Giles F.J, R. Redman, S. Yazji and L. Bellm. 2002. Iseganan HCl: a novel antimicrobial agent. Expert Opin. Investig. Drugs 11: 1-8.
  • Hancock R.E.W., T.J. Falla and M. Brown. 1995. Cationic antimicrobial peptides. Adv. Microb. Physiol. 37: 136-175.
  • Hand W.L. 2000. Current challenges in antibiotic resistance. Adolesc. Med. 11: 427-428.
  • Hwang P.M. and H.J. Vogel. 1998. Structure-function relationships of antimicrobial peptides. Biochem. Cell Biol. 76: 235-246.
  • Kamysz W., M. Okrój and J. Łukasiak. 2003. Novel properties of antimicrobial peptides. Acta Bioch. Pol. 50: 461-469.
  • Kamysz W., B. Kochańska, A. Kędzia, J. Ochocińska, Z. Mackiewicz and G. Kupryszewski. 2002. Statherin SV2 and its analogue. Synthesis and evaluation of antimicrobial activity. Pol. J. Chem. 76: 801-806.
  • Liu H.H. 1999. Antibiotic resistance in bacteria. A current and future problem. Adv. Exp. Med. Biol. 455: 387-396.
  • Mosca D.A., M.A. Hurst, W. So, B.S.C. Viajar, C.A. Fujii and T.J. Falla. 2000. IB-367, a protegrin peptide with in vitro and in vivo activities against the microflora associated with oral mucositis. Antimicrob. Agents. Chemother. 44: 1803-1808.
  • Nicholas P. and A. Mor. 1995. Peptides as weapons against microorganisms in the chemical defence system of vertebrates. Annu. Rev. Microbiol. 49: 277-304.
  • Oh H., M. Hedberg, D. Wade and C. Edlund. 2000. Activities of synthetic hybrid peptides against anaerobic bacteria: aspects of methodology and stability. Antimicrob. Agents. Chemother. 44: 68-72.
  • Osusly, M. Zhou, G. Osuska, L. Hancock, R.E. Kay, WW. and S. Mistra. 2000. Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat. Biotechnol. 18: 1162-1166.
  • Özkuyumcu C. 1999. Resistant enterococci: prevalence and factors associated with colonization in a Turkish university hospital. Acta Microbiol. Pol. 48: 203-207.
  • Park C.B., K.S. Yi, K. Matsuzaki, M.S. Kim and S.C. Kim. 2000. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl. Acad. Sci. USA 97: 8245-8250.
  • Thornsberry C. 1991. Antimicrobial susceptibility testing: general considerations, p. 1059-1201. In: Manual of clinical microbiology, 5th ed, Balows A., W.J. Hausler, K.L. Herrmann, H.D. Isenberg and H.J. Shadomy (eds) American Society for Microbiology, Washington D.C.
  • Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-a8db6696-3079-422d-99d4-f312f58a1eaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.