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The aim of the study was to investigate whether the stimulation of the superior 
cervical ganglion may influence vasopressin and oxytocin release into the 
hypophysial portal blood. In urethane-chloralose anaesthesia the pituitary gland was 
exposed by transpharyngeal approach in rats. The hypophysial portal vessels were 
transsected in the narrowing between glandular portion of the hypophysis and the 
infundibulum. The 15 min blood samples from the cut portal vessels were collected 
before and during electrical stimulation of the superior cervical ganglion. 
Vasopressin and oxytocin content in the plasma were determined by 
radioimmunoassay. In the control samples the vasopressin content amounted to 
3.2+1.03 ng/mL and oxytocin 0.75 +0.3 ng/mL. Stimulation of the superior cervical 
ganglion evoked an increase (9.6-fold) in vasopressin concentration but not in 
oxytocin in the blood plasma of hypophysial portal vessels. On the basis of the 
results obtained, it may be presumed that the sympathetic efferents arising from the 
superior cervical ganglion induced only vasopressin but not in oxytocin release into 
the hypophysial portal blood. 
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INTRODUCTION 

The majority of vasopressinergic and oxytocinergic neurons of the 

supraoptic and paraventricular nuclei origin project to the neural lobe of the 

pituitary. However, vasopressinergic and oxytocinergic axons project also to 

other structures of the cental nervous system, among them to the median 

eminence where both vasopressinergic and oxytocinergic axons terminated on 

the pituitary primary portal vessels (1—3). This fact associated with the finding 

of high concentration of vasopressin and oxytocin in hypophysial portal blood 

(4—6) suggests the participation of these peptides in the release of anterior
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pituitary hormones. It has been established that vasopressin and oxytocin play 
an important role in the control of adrenocorticotropic hormone secretion 
(8—11). They may also be important as stimulators of thyrotropin-releasing 
hormone and growth hormone release (12, 13). Although earlier studies 
eliminated vasopressin as a corticotropin-releasing factor (10), recent evidence 
suggests that oxytocin may augment the response of corticotropes to 
corticotropin-releasing hormone (8, 14). Oxytocin is also known to be 
a stimulator of prolactin and thyrotropin-releasing hormone (12, 15, 16) and 
inhibitor of growth hormone release (12). It was also shown that vasopressin 
and oxytocin influenced gonadotropins secretion (17, 18). 

Only scarce information has been available so far on the mechanism of the 
regulation of neurohormones release into hypophysial portal blood. 
Hypothalamic catecholamine depletion had no effect on the release of 
vasopressin into hypopysial portal blood (19). The noradrenergic innervation 
of the hypothalamo-hypophysial system has been postulated to converge 
impulses of the central and autonomic origin (20). The autonomic innervation 
derives from the superior cervical ganglia (20). Our previous data indicate that 
stimulation of the superior cervical ganglion caused an increase in the release of 
vasopressin and oxytocin from the posterior pituitary lobe incubated “in situ” 
(21, 22). 

The aim of the present study was to investigate whether the stimulation of 
the superior cervical ganglion may influence vasopressin and oxytocin 
simultaneous release into hypophysial portal blood. 

MATERIAL AND METHODS 

The experiments were performed on 24 males rats 300—340 g of body weight, being the F, 
generation of cross-breeding of August strain males and Wistar strain females from the stock of the 
Institute of Oncology in Warsaw. The animals were kept under constant temperature, 14: 10 h light 
dark cycle and received standard rat pellets (LSM) and water ad libitum. The anaesthesia was 
induced by intraperitoneal injection of urethane (Fluka AG, CH-9470 Bucks, Switzerland) 50 
mg/kg b.w. together with chloralose (Roth, Germany) 6 mg/kg b.w. 

Exposure of the hypophysial portal vessels 

As soon as anaesthesia occurred the animal was immobilized on a special operating board by 
introducing ear bars into the external ears and fixing the upper jaw with a clamp. The skin and the 
subcutaneus tissue in the left inguinal region were infiltrated with 4% Polocaine (Polfa, Poland), 
the left femoral vein was exposed, cut and through it fine polyetylene tubing was introduced into 
the vena cava inferior. Through the tubing 1.5—2.0 ml of 3% solution of dextran (110.000 
molecular weight) in 0.9% NaCl solution was slowly injected until the end of preparation. 

The skin, subcutaneus tissues and the muscles on the neck were infiltrated with 4% Polocaine 
solution in midline and along both mandibular rami. The skin was cut in the midline, the trachea
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was exposed and polyetylene tube was placed in it and tied. The mandible was cut in the midline 
and the bones of the base cranium were reached according to the technique described in detail by 
Worthington (23) using a binocular dissecting stereomicroscope. With a dental drill, a longitudinal 
hole was made in the sphenoid bone to expose the dura mater between the posterior margin of the 
optic chiasma and the pons. The dura was cut longitudinally with a special fine sharp angular 
knife. Through a polyethylene tube inserted into the femoral vein, 1000 i.u. of heparin (Polfa, 
Poland) was injected. 

Blood collection from hypophysial portal vessels 

The hypophysial portal vessels were transsected superficially using irs scissors in the narrowing 
between the glandular portion of the hypophysis and the infundibulum. The cut vessels were 
constantly washed with 0.9% NaCl solution and aspirated together with blood from hypopysial 
portal vessels. Six 25-min samples of blood diluted with 0.9% NaCl (1 mL/15 min) were collected 
and centrifuged. In the supernatant the vasopressin and oxytocin concentration were determined. 
Diluted hypophysial portal blood was filled up to the volume of 2 mL and hemoglobin 
concentration was determined spectroscopically according to cyanmethemoglobin method. The 
volume of blood outflowing from cut portal vessels was calculated on the basis of the hemoglobin 
concentration as described previously (27). 

Electrical stimulation of the superior cervical ganglion 

The tissues around the left common carotid artery were drawn laterally and the left superior 
cervical ganglion was exposed. Bipolar platinum electrodes were slipped under the ganglion so that 
the electrodes did not come into contact with adjacent tissues. Electrodes were connected to a Disa 
stimulator Type 13 G04. Stimulation parameters were monitored on a Kabid oscilloscope ST 
SO9A. For stimulation of the superior cervical ganglion monophasic electric pulses of the following 
parameters were applied: frequency 20 Hz, duration 3 msec, amplitude 10 V, (30 sec stimulation on 
and 30 sec stimulation off). During the stimulation of the superior cervical ganglion ipsilateral 
dilatation of the palpebral fissure was observed. 

Radioimmunoassay of oxytocin and vasopressin 

Arginine vasopressin (Lot 1987-08-24) and oxytocin (Lot 1988-02-03) (synthesized in the 
Institute of Organic Chemistry, Technical University of Lodz) were conjugated with 
high-molecular ligands by the carboimide method (24). The emulsion was injected intradermally, in 
the dose of 100 ug, into multiple sitea on the back of New Zeland rabbits at one week intervals, 
during four weeks. A booster injection of arginine vasopressin was administred 12 weeks after the 
4th injection. 10 days later blood was collected and serum was separated. 

Characteristic of vasopressin and oxytocin antisera 

The titer to be used in the radioimmunoassay for anti-arginine vasopressin antibody No 
1228/1987-08-24 was 1:2400 and for anti-oxytocin antibody No 1232/1988-02-03 was 1:80000 
(both final dilutions). Cross reactivity with oxytocin for anti-arginin vasopressin antibodies was 
0.016%, with lysin vasopressin — 2.7%, with gonadotropin-releasing hormone, thyrotropin 
releasing hormone, leucine enkephalin, angiotensin II, Substance P (SP), SP hexapeptide 

(pyr-Glu*-Tyr*) SPG_,, and SP hexapeptide (Tyr®)SP,_,, it was 0.002%. Cross reactivity with
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arginine vasopressin for oxytocin antiserum was 1.12%, with luliberin, thyrotropin releasing 
hormone, leucine enkephalin and angiotensin II it was 0.002%. The sensitivity of arginine 
vasopressin antiserum was 1.73 pg per tube that of oxytocin antiserum — 3.56 pg per tube. 

lodination of arginine vasopressin and oxytocin 

Arginine vasopressin, Peninsula Laboratorie, Inc Lot No 01115907 (Lot) and oxytocin 
Peninsula Laboratorie, Inc. Lot No 027179 were iodinated with 17°I using the chloramine-T 
method (25). Unreacted iodide was removed by mixing the reaction mixture with Amberlite (ion 
Exachange Resin, type CG-400, Serva). Further purification was carried out on column of 
Sephadex G-25 Fine (Pharmacia) pre-equilibrated and eluated with 0.05% mol/L acetic acid. 
Labeled vasopressin and oxytocin were identified in the third peak by their ability to bind to the 
corresponding antibodies (26). The effectivenes of the iodination procedure was 70—90%. The top 
or the 1 st descending portion of this peak was used as the tracer in radioimmunoassay. Intra and 
interassay coefficients of variation for the vasopressin assay were 3.9 and 6.4, respectively; for the 
oxytocin assay the coefficients of variation were 4.8% and 8.4, respectively. 

Extraction of vasopressin and oxytocin from diluted blood plasma 

0.4 mL acetone was added to 0.8 mL of diluted blood plasma with 0.9% NaCl. The mixture 
was strirred on Micro-Shacker 326 m for 15 min and then centrifuged. The precipitate was 
discarded and the supernatant was gently mixed with 0.8 ml of benzene. The top benzene phase 
was then removed and discarded. The remaining delipidated lower aqueous acetone phase was 
lyophilized. 

For the estimation of recovery of known quantities of the added hormone through the 
extraction procedure, unlabeled vasopressin and oxytocin were added to the plasma to give 
concentration of 2.2—35.7pg/tube, extraction was performed; vasopressin and oxytocin was 
determined. The recovery was estimated to approximate 56% for vasopressin and 50% for 
oxytocin. Values given for plasma vasopressin and oxytocin in this paper have not been corrected 
for losses during extraction. 

Statistical evaluation of the results 

The vasopressin and oxytocin concentration were finally expressed in pg/min of blood plasma 
as mean + standard error of the mean (SEM). Analysis of variance followed by Duncan’s multiple 
range test was used to establish the significance of difference. Differences were considered to be 
significant at p < 0.05. 

RESULTS 

The hypophysial-portal blood flow was 3.0+0.1uL/min. Electrical 
stimulation of the superior cervical ganglion did not change hypophysial portal 
blood flow (Fig. 1). 

In the control group of animals the oxytocin release into hypophysial 
portal blood did not differ in consecutive samples and amounted to 2.48 +0.93 
pg/min (Fig. 2). Stimulation of the superior cervical ganglia did not change the 
oxytocin release into the hypophysial portal blood (Fig. 3).
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Fig. 1. Hypophysial portal blood flow in pL/min (mean + SE). A — control; B — during collection 
4-th sample the superior cervical ganglion (SCG) was stimulation (10 V, 20 Hz, 3 ms). 

Vasopressin release into the hypophysial portal blood in the control group 
was 9.6+3.1 pg/min (Fig. 2). Stimulation of the superior cervical ganglia 
evoked an increase (9.6-fold) in vasopressin release into the blood hypophysial 
portal vessels (Fig. 3). 
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Fig. 2. Vasopressin and oxytocin release into the hypophysial portal blood. mean+SE, n = 12. 
Hypophysial portal blood flow in the same animals is presented on Fig. I-A.
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Fig. 3. Vasopressin and oxytocin release into the hypophysial portal blood. During collection 4-th 
sample the superior cervical ganglion was stimulation (10 V, 20 Hz, 3 ms); mean+SE, n = 12. 

*p<0.05. Hypophysial portal blood flow in the same animals is presented on Fig. I-B. 

DISCUSSION 

The method applied in this study enables collection of the blood from 
hypophysial portal vessels. Hypophysial portal blood flow was constant during 
all experiments. In our experiments we have not obtained any changes in 
hypophysial portal blood flow after electrical stimulation of the superior 
cervical ganglion. Similar results were obtained in previous studies (27). It has 
been suggested that sympathetic efferents do not participate in the regulation 
of hypophysial portal blood flow. Therefore it means that the concentration of 
the hormones in the hypophysial portal blood does not depend on the quantity 
of the blood flow. 

The obtained data of neurohormones concentration in hypophysial portal 
blood are consistent with other reports of a high concentration of vasopressin 
and oxytocin in blood from the same vessels (4—7). Electrical stimulation of the 
superior cervical ganglion stimulates of the sympathetic system which takes 
place in many physiological and pathophysiological conditions, e. g. during 
stress (28, 29). The obtained results indicate that excitation of the sympathetic 
system by electrical stimulation of the superior cervical ganglion causes 
a considerable increase (9.6-fold) in vasopressin release, but has no effect on the
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release of oxytocin into blood of the hypophysial portal system. In our studies 

we have demonstrated in the increase in both oxytocin (21) and vasopressin (22) 

release from the posterior pituitary lobe after superior cervical ganglion 

stimulation. Romeo et al. (28) postulate that stimulation of the sympathetic 

system by the stimulation of the sympathetic efferents inhibits the release of 
vasopressin into the blood, as after superior cervical ganglionectomy, in the 

“walerian degeneration” phase of sympathetic fibres, in which an increased 
release of noradrenaline from the postganglionic endings (imitating the 

physiological activation) is due to occur, the plasma concentration of 
vasopressin decreases. It seems, however, that electric stimulation is closer to 

physiological conditions of transmitter release than an increased release of 

noradrenaline from degenerating postganglionic endings caused by superior 
cervical ganglionectomy (30). Inhibitory or excitatory effects of noradrenaline on 

vasopressin and oxytocin release can depend on the adrenoceptor subtype 
(31—34), and/or peptide modulators (35, 36) involved in mediating mechanism. 

Electrophysiological studies have historically supported the role of 
noradrenaline in the control of supraoptic nucleus of hypothalamus; the initial 

study using iontophoresis of noradrenaline antidromically identified neurons 

indicated that noradrenaline was primarily inhibitory in cats, and that the 
inhibition was mediated by а B-receptor (37). Inhibition of rat supraoptic 

nucleus neurons was also the predominant effect seen by Arnauld et al. (38), but 

in this study noradrenaline delivered with lower currents was sometimes 

excitatory to some phasically firing (i.e., putative vasopressin secreting) 

neurons. More recently, investigators have found that noradrenaline and 

a,-receptor agonists consistently excite most phasic supraoptic nucleus 

neurons in slices (39) and explants of the hypothalamus-neurophypophysial in 
vitro when applied through the bath or by micropressure (40). In acutely 

prepared explants (i.e., those tested on the day of excision), stimulation of 
tuberal supraoptic nucleus neurons by noradrenaline and the a,-agonists 

phenylephrine was concomitant with a dose-dependent release of vasopressin 
into the perfusate, whereas B-and a,-agonists proved ineffective (41). The results 
from in vivo studies suggest that central and f-adrenoceptors mediate 
inhibitory effects of noradrenaline on vasopressin release, whereas the 

a,-subtype mediates excitation. The inhibition of vasopressin release in 

cultured hypothalamus-neurohypophysial explants in vitro by noradrenaline 
and its prevention by nonspecific a-antagonists provides evidence that these 
receptors are localized within the ventral hypothalamus, perhaps on the 

supraoptic nucleus neurons themselves (30). 

The frequency of electrical pulses used in our experiments is an efficient 
stimulus to release acetylcholine from preganglionic fibers (42), noradrenaline 
and coexisting peptides from postganglionic fibres (43). The same stimulation 
as regards frequency, duration, amplitude of electric pulses with the same 

10 — Journal of Physiology and Pharmacology
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lenght of “on” and “off” stimulation evoked also an increase in oxytocin 
and vasopressin (21, 22) release into the incubation medium of the posterior 
pituitary lobe incubated “in situ” and into the blood outflowing from sella 
turcica region (44), as well as the decrease of the amount of neurosecretory 
granules in the posterior pituitary lobe. The decrease of the amount of 
neurosecretory granules in the neurohypophysis may be caused by an 
increased release of neurohormones after the superior cervical ganglion 
stimulation (45). 

As it was said in the introduction, vasopressin and oxytocin released 
into the blood of the pituitary portal system fulfil another physiological 
role than the same neurohormones released from the posterior pituitary 
lobe, and therefore, mechanism regulating their release may take various 
courses. In literature there have been very few reports concerning the 
regulation of vasopressin and oxytocin release into the pituitary portal blood. 
The lack of influence of hypothalamic catecholamines and glucocorticoids 
on the release of vasopressin and oxytocin into the pituitary portal vessels 
has been proved (46). On the other hand, the removal of the posterior 
pituitary lobe caused an increase in vasopressin and oxytocin content in 
hypophysial portal blood (47). 

Peripheral noradrenergic innervation arising from the superior cervical 
ganglion exerts a modulation influence on the release of hypothalamo- 
hypophysial hormones, which may be accomplished by the effect of mediator 
and modulators released on postganglionic endings, (34, 25) surrounding 
hypothalamic neurons secreting hypophysiotropic hormones, on the secretory 
cells of the anterior lobe of the hypophysis, as well as, indirectly, by the blood 
of the hypophysial portal system. 

One the basis of results obtained, it may be presumed that the sympathetic 
efferents arising from the superior cervical ganglion induced only vasopressin 
but not oxytocin release into the hypophysial portal blood. 
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