PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 56 | 2 |

Tytuł artykułu

Abundance and diversity of soil microarthropod communities related to different land use regime in a traditional farm in Western Norway

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Acari and Collembola are the dominant groups within the mycophagous arthropods linked to fungal-based food webs in undisturbed soils. Studies on soil microarthropod communities in old, traditional, multifunctional farmland, and studies on secondary succession following marginalization and abandonment of traditional farmland are lacking in Europe. Thus, we studied patterns of microarthropod communities related to different land use regimes in a traditional farm in Western Norway. Soil mesofauna communities were analysed at four sites: site OM – old, herb rich, open hay meadow in traditional use; site F1 – abandoned hay meadow with pollarded trees (first fallow); site F2 – deciduous woodland (abandoned hay meadow with old pollards, heavily overgrown, second fallow); and site RM – restored hay meadow with scattered, newly pollarded trees. The abundance of the taxa varied considerably between habitats (for instance: total microarthropods – from 112.4 ±11.4 to 29.2±3.4, Acari – from 83.9±10.2 to 15.6±1.8 and Oribatida – from 68.6±9.5 to 8.2±1.3 × 10³ m⁻², for OM and RM sites respectively). The abundance of total Acari, total Oribatida, Oribatida adults and juveniles differed significantly between OM-F1, OM-RM, OM-F2 and RM-F2 sites and it was significantly correlated with continuity of land use and/or tree cover. Oribatida was the group with the highest densities and percentage dominance (except RM site). The percent contribution of total Oribatida in Acari abundance was negatively correlated with the percentage of Actinedida. Nine Ptyctimina species, six Nothroidea species and four Uropodina species were detected, but most of them occurred as single individuals. Abundance of three Ptyctimina [Atropacarus (Atropacarus) striculus (C.L. Koch), Phthiracarus ferrugineus (C.L. Koch), P. globosus (C.L. Koch)], and two Uropodina [Trachytes pauperior Berlese and Dinychus perforatus Kramer] species differed significantly between some sites. The percentage similarity (Renkonen index) has a high indicative value for measuring the distance between ecosystems with apparently similar communities of Uropodina. The OM and RM sites differed most and site pairs – F1-F2 and F1-RM were the most similar. The densities of some taxa were about twoor three-fold greater for the F1site than the RM site. Ratios of Acari to Collembola, total Oribatida to Collembola and total Oribatida to Actinedida were highest on OM site (3.2, 2.6, 11.8 respectively) and decreased in the following order: F2>F1>RM (as an example, total Oribatida to Actinedida ratios were 9.8 on F2 site, 6.2 on F1 and 3.1 on RM). These ratios differed significantly between the OM and RM sites. The lowest ratios on RM site are probably an effect of recent disturbance (change of land use) of this site. Our results suggest that soil in OM site, despite constant disturbance during long time (scything, hay raking and sheep grazing), has probably a stable mesofauna community with the highest abundance of Oribatida. Our results have provided new knowledge about ecosystems in traditional farmland and can be used in monitoring programmes of post-arable land.

Wydawca

-

Rocznik

Tom

56

Numer

2

Opis fizyczny

p.273-288,ref.

Twórcy

autor
  • Sogn og Fjordane University College, P.O.Box 133, N-6851 Sogndal, Norway
autor
autor
autor

Bibliografia

  • Altieri M.A. 1999 – The ecological role of biodiversity in agroecosystems – Agric. Ecosyst. Environ., 74: 19–31.
  • Austad I., Skogen A. 1990 – Restoration of a deciduous woodland in Western Norway formerly used for fodder production: effects on tree canopy and field layer – Vegetation, 88: 1–20.
  • Austad I., Losvik M. 1998 – Changes in species composition following field and tree layer restoration and management in a wooded hay meadow – Nord. J. Bot., 18: 641–662.
  • Battigelli J.P., Spence J.R., Langor D.W., Berch S.M. 2004 – Short-term impact of forest soil compaction and organic matter removal on soil mesofauna density and oribatid mite diversity – Can. J. Forest Res., 34: 1136–1149.
  • Beare M.H., Reddy M.V., Tian G., Srivastava S.C. 1997 – Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of decomposer biota – Appl. Soil Ecol., 6: 87–108.
  • Beck L., Römbke J., Breure A.M., Mulder C. 2005 – Considerations for the use of soil ecological classification and assessment concepts in soil protection – Ecotox. Environ. Safe., 62: 189–200.
  • Behan-Pelletier V.M. 1999 – Oribatid mite biodiversity in agroecosystems: role of bioindication – Agric. Ecosyst. Environ., 74: 411–423.
  • Behre K.E. 1988 – The role of man in European history (In: Vegetation history III, Eds: B. Huntley, T. Webb) – Kluwer Academic Publishers, London, pp. 633–672.
  • Bengtsson J. 1994 – Temporal predictability in forest soil communities – J. Anim. Ecol., 63: 653–665.
  • Bengtsson J. 1998 – Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function – Appl. Soil Ecol., 10: 191–199.
  • Bengtsson J., Nilsson S.G., Franc A., Menozzi P. 2000 – Biodiversity, disturbance, ecosystem function and management of European forests – Forest Ecol. Manage., 132: 39–50.
  • Berthet P.L. 1964 – Field study of the mobility of Oribatei (Acari) using radioactive tagging – J. Anim. Ecol., 33: 443–449.
  • Black H.I.J., Parekh N.R., Chaplow J.S., Monson F., Watkins J., Creamer R., Potter E.D., Poskitt J.M., Rowland P., Ainsworth G., Hornung M. 2003 – Assessing soil biodiversity across Great Britain: national trends in the occurrence of heterotrophic bacteria and invertebrates in soil – J. Environ. Manage., 67: 255–266.
  • Błoszyk J. 1999 – Geograficzne i ekologiczne zróżnicowanie zgrupowań roztoczy z kohorty Uropodina (Acari: Mesostigmata) w Polsce. I. Uropodina lasów grądowych (Carpinion betuli) [Geographical and ecological variability of mites of the cohort Uropodina (Acari: Mesostigmata) in Poland. 1. Uropodine mites of oak-hornbeam forests (Carpinion betuli)] – Kontekst, Poznań, 245 pp.
  • Cancela da Fonseca J.P., Sarkar S. 1996 – On the evaluation of spatial diversity of soil microarthropod communities – Eur. J. Soil Biol., 32: 131–140.
  • Clapperton M.J., Kanashiro D.A., Behan-Pelletier V.M. 2002 – Changes in abundance and diversity of microarthropods associated with Fescue Prairie grazing regimes – Pedobiologia, 46: 496–511.
  • de Goede R.G.M., Brussard L. 2002 – Soil zoology: an indispensable component of integrated ecosystem studies – Eur. J. Soil Biol., 38: 1–6.
  • Domaas S.T., Hamre L.N., Austad I. 2003 – Historical cadastral maps as a tool for identifying key biotopes in the cultural landscape (In: Ecosystems and sustainable development IV vol. 2, Eds: E. Tiezzi, C.A. Brebbia, J.L. Usó), Advances in Ecological Sciences 19 – WIT Press, pp. 913–924.
  • Evans G.O., Sheala J.G., MacFarlane D. 1961 – The terrestrial Acari of the British Isles. An introduction to their morphology, biology and classification – Dorking, Adlard and Son, London, 219 pp.
  • Fremstad E. 1998 – Vegetasjonstyper i Noreg – NINA Temahefte, 279 pp. (summary in English).
  • Giller P.S. 1996 – The diversity of soil communities, the ‘poor man’ s tropical rainforest’ – Biodivers. Conserv., 5: 135–168.
  • Gulvik M.E. 2007 – Mites (Acari) as indicators of soil biodiversity and land use monitoring: a rewiev – Pol. J. Ecol., 55: 415–440.
  • Gwiazdowicz D.J., Gulvik M.E. 2005 – Checklist of Norwegian mesostigmatid mites (Acari, Mesostigmata) – Norw. J. Entomol., 52: 117–125.
  • Hansen R.A., Coleman D.C. 1998 – Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari: Oribatida) in litterbags – Appl. Soil Ecol., 9: 17–23.
  • Hæggström C.A. 1995 – Lövängar i Norden och Balticum – Nordenskiöldsamfundets tidskr., 54: 21–58 (in Norwegian).
  • Hedlund K., Griffiths B., Christensen S., Scheu S., Setälä H., Tscharntke T., Verhoef H. 2004. – Trophic interactions in changing landscapes: responses of soil food webs – Basic Appl. Ecol., 5: 495–503.
  • Hubert J., Kučerová A., Münzbergová Z. 2004 – The comparison of oribatid mite (Acari: Oribatida) communities on various patches in the seminatural meadow – Ekológia (Bratislava), 23: 328–341.
  • Kethley J. 1990 – Acarina: Prostigmata (Actinedida) (In: Soil biology guide, Ed. D.L. Dindal) – John Wiley and Sons, Inc., New York, pp. 667–756.
  • Kinnear A., Tongway D. 2004 – Grazing impact on soil mites of semi-arid chenopod scrublands in Western Australia – J. Arid Environ., 56: 63–82.
  • Koehler H.H. 1997 – Mesostigmata (Gamasina, Uropodina), efficient predators in agroecosystems – Agric. Ecosyst. Environ., 62: 105–117.
  • Krebs C.J. 1999 – Ecological methodology – Addison-Welsey Educational Publishers, Inc., 619 pp.
  • Krivtsov V., Griffiths B.S., Salmond R., Liddell K., Garside A., Bezginova T., Thompson J.A., Staines H.J., Watling R., Palfreyman J.W. 2004 – Some aspects of interrelations between fungi and other biota in forest soil – Mycol. Res., 108: 933–946.
  • Lagerlöf J., Andrèn O. 1985 – Abundance and activity of soil mites (Acari) in four croping systems – Pedobiologia, 28: 343–357.
  • Lid J., Lid D.T. 1994 – Norsk flora – Det Norske Samlaget, Oslo, 1014 pp (in Norwegian).
  • Losvik M.H. 1993 – Hay meadow community in western Norway and relations between vegetation and environmental factor – Nord. J. Bot., 13: 195–206.
  • Luxton M. 1981 – Studies on the prostigmatic mites of a Danish beech wood soil – Pedobiologia, 22: 277–303.
  • Maraun M., Scheu S. 2000 – The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research – Ecography, 23: 374–383.
  • Maraun M., Martens H., Migge S., Theenhaus A., Scheu S. 2003 – Adding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates – Eur. J. Soil Biol., 39: 85–95.
  • Marshall V.G. 2000 – Impacts of forest harvesting on biological processes in northern forest soils – Forest Ecol. Manage., 133: 43–60.
  • McGonigle T.P. 1995 – The significance of grazing on fungi in nutrient cycling – Can. J. Bot., 73: 1370–1376.
  • Niedbała W., Błaszak C., Błoszyk J., Kaliszewski M., Kaźmierski A. 1981 – Roztocze (Acri). Zoocenologiczne podstawy kształtowania środowiska przyrodniczego osiedla mieszkaniowego Białołęka Dworska w Warszawie. Część I. Skład gatunkowy i struktura fauny terenu projektowanego osiedla mieszkaniowego [Mites (Acari). Structure of soil mite (Acari) communities in urban green of Warsaw] – Fragm. Faun. (Wars), 26: 105–156 (in Polish).
  • Niedbała W., Błoszyk J., Kaliszewski M., Kaźmierski A., Olszanowski Z. 1990 – Structure of soil mite (Acari) communities in urban green of Warsaw – Fragm. Faun. (Wars), 33: 21–44.
  • Norderhaug A., Austad I., Hauge L., Kvamme M. 1999 – Skjøtselsboka for kulturlandskap og gamle norske kulturmarker – Landbruksforlaget, 252 pp (in Norwegian).
  • Norton R.A. 1990 – Acarina: Oribatida (In: Soil biology guide, Ed. D. L. Dindal) – John Wiley and Sons, Inc., New York, pp. 779–803.
  • Norton R.A. 1994 – Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmatida (In: Mites: Ecological and evolutionary analyses of life history patterns Ed. M.A. Houck) – Chapman and Hall, New York, 99–135 pp.
  • Ojala R., Huhta V. 2001 – Dispersal of microarthropods in forest soil – Pedobiologia, 45: 443–450.
  • O`Lear H.A., Blair J.M. 1999 – Responses of soil microarthropods to changes in soil water availability in tallgrass prairie – Biol. Fertil. Soils, 29: 207–217.
  • Osler G.H.R., Recous S., Fillery I.R.P., Gauci C.S., Zhu C., Abbott L.K. 2004 – Correlation between mite community structure and gross N fluxes – Soil Biol. Biochem., 36: 191–104.
  • Paoletti M.G. 1988 – Soil invertebrates in cultivated and uncultivated soils in northeastern Italy – Redia, 71: 501–563.
  • Paoletti M.G., Bressan M. 1996 – Soil invertebrates as bioindicators of human disturbance – Crit. Rev. Plant Sci., 15: 21–62.
  • Prinzing A., Lentzsch P., Voigt F., Woas S. 2004 – Habitat stratification stratifies a local population: ecomorphological evidence from a bisexual, mobile invertebrate (Carabodes labyrinthicus; Acari) – Ann. Zool. Fenn., 41: 399–412.
  • Rackham O. 1976 – Trees and woodland in the British Landscape – London, 402 pp.
  • Rantalainen M.L., Kontiola L., Haimi J., Fritze H., Setälä H. 2004 – Influence of resource quality on the composition of soil decomposer community in fragmented and continuous habitat – Soil Biol. Biochem., 36: 1983–1996.
  • Römbke J., Breure A.M., Mulder C., Rutgers M. 2005 – Legislation and ecological quality assessment of soil: implementation of ecological indication systems in Europe – Ecotoxicol. Environ. Safety, 62: 201–210.
  • Ruf A., Beck L., Dreher P., Hund-Rinke K., Römbke J., Spelda J. 2003 – A biological classification concept for the assessment of soil quality: ‘biological soil classification scheme’ (BBSK) – Agric. Ecosyst. Environ., 98: 263–271.
  • Ruf A., Beck L. 2005 – The use of predatory soil mites in ecological soil classification and assessment concepts, with perspectives for oribatid mites – Ecol. Environ. Safety, 62: 290–299.
  • Scheu S., Schulz E. 1996 – Secondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebrates – Biodivers. Conserv., 5: 235–250.
  • Schneider K., Migge S., Norton R.A., Scheu S., Langel R., Reineking A., Maraun M. 2004 – Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/ 14N) – Soil Biol. Biochem., 36: 1769–1774.
  • Sgardelis S.P., Usher M.B. 1994 – Responses of soil Cryptostigmata across the boundary between a farm woodland and an arable field – Pedobiologia, 38: 36–49.
  • Siepel H. 1995 – Application of microarthropod life-history tactics in nature management and ecotoxicology – Biol. Fertil. Soils, 19: 75–83.
  • Siepel H. 1996a – Biodiversity of soil microarthropods: the filtering of species – Biodivers. Conserv., 5: 251–260.
  • Siepel H. 1996b – The importance of unpredictable and short-term environmental extremes for biodiversity in oribatid mites – Biodivers. Lett., 3: 26–34.
  • Siepel H., Maaskamp F. 1994 – Mites of different feeding guilds affect decomposition of organic matter – Soil Biol. Biochem., 26: 1389–1394.
  • Slomian S., Gulvik M.E., Madej G., Austad I. 2005 – Gamasina and Microgyniina mites (Acari, Gamasida) in two traditional farms in Sogn og Fjordane, Norway – Norw. J. Entomol., 52: 39–48.
  • Tabatabai M.A. 1982 – Soil Enzymes (In: Methods of soil analysis, Part 2. Chemical and microbiological properties Eds: A.L. Page, R.H. Miller, D.R. Keeney) – Agronomy monograph no. 9, Madison, Wisconsin USA, pp. 903–947.
  • Teuben A., Verhoef H.A. 1992 – Direct contribution by soil arthropods to nutrient availability through body and faecal nutrient content – Biol Fertil Soils, 14: 71–75.
  • Vreeken-Buijs M.J., Hassink J., Brussard L. 1998 – Relationships of soil microarthropod biomass with organic matter and pore size distribution in soils under different land use – Soil Biol. Biochem., 30: 97–106.
  • Werner M.R., Dindal D.L. 1990 – Effects of conversion to organic practices agricultural on soil biota – Amer. J. Alternative Agric., 5: 24–32.
  • Zaitsev A.S., Wolters V., Waldhardt R., Dauber J. 2006 – Long-term succession of oribatid mites after conversion of croplands to grasslands – Appl. Soil Ecol., 34: 230–239.
  • Zar J.H. 1999 – Biostatistical analysis – Prentice-Hall, Inc, 663 pp.+ 123 pp.
  • Żyromska-Rudzka H. 1976 – The effect of mineral fertilization of a meadow on the oribatid mites and other soil mesofauna – Pol. Ecol. Stud., 2: 157–182.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-a6423d28-68e0-4e80-93c2-9e5339f4827e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.