PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 05 | 4 |

Tytuł artykułu

The chicken alpha- and beta-globin gene domains and their chromatin organization

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The eukaryotic genome is organized into discrete chromatin domains. The globin groups of genes have been two of the classical biological systems to study the relationship between gene regulation and chromatin structure during development. The individual promoters, enhancers and silencers of the globin genes are stage- and tissue-specific regulatory elements that are controlled by the interaction of ubiquitous and erythroid nuclear factors. Such regulated activation requires an optimal chromatin organization. Erythroid and constitutive DNase I hypersensitive sites (DHs) contribute to chromatin domain remodeling mediated by locus control region (LCR) activity and defined by domain boundaries. A comparative analysis of the chicken α-and β-globin domains will outline the relevance and effect of chromatin structure on gene regulation.

Wydawca

-

Rocznik

Tom

05

Numer

4

Opis fizyczny

p.451-467,fig.,ref.

Twórcy

  • Universidad Nacional Autonoma de Mexico, Apartado Postal 70-242, Mexico D.F. 04510

Bibliografia

  • 1. Felsenfeld, G., Chromatin structure and the expression of globin-encoding genes. Gene 135 (1993) 119-124.
  • 2. Edstrom, J. E. and Daneholt, B. Sedimentation properties of the newly synthesized RNA from isolated nuclear components of Chironomus tetans salivary gland cells. J. Mol. Biol. 28 (1967) 331-343.
  • 3. Bonifer, C., Hecht, A., Saueressig, H., Winter, D. M. and Sippel, A. E., Dynamie chromatin: the regulatory domain organization of eukaryotic gene loci. J. Cell. Biochem. 47 (1991) 99-108.
  • 4. Bulger, M. and Groudine, M., Looping versus linking: toward a model for long-distance gene activation. Genes Dev. 13 (1999) 2465-2477.
  • 5. Engel, J. D. and Tanimoto, K., Looping, linking, and chromatin activity: New insights into β-globin locus regulation. Cell 100 (2000) 499-502.
  • 6. Higgs, D. R., Do LCRs open chromatin domains? Cell 95 (1998) 299-302.
  • 7. Li, Q., Harju, S. and Peterson, K. R., Locus control regions coming of age at a decade plus. TIG 15 (2000) 403-408.
  • 8. Hebbes, T. R., Clayton, A. L., Thome, A. W. and Crane-Robinson, C., Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO J. 13 (1994) 1823-1830.
  • 9. Dodgson, J. B., McCure, K. C., Rusling, D. J., Krust, A. and Engel, J. D., Adult chicken α-globin genes, αA and αD: no anemic shock α-globin exists in domestic chickens. Proc. Natl. Acad. Sci. USA 78 (1981) 5998-5002.
  • 10. Dodgson, J. B. and Engel, J. D., The nucleotide sequence of the adult chicken α-globin genes. J. Biol. Chem. 258 (1983) 4623-4629.
  • 11. Razin, S. V., Vassetzky, Y. S., Kvartskava, A. I., Grinenko, N. F. and Georgiev, G. P., Transcriptional enhancer in the vicinity of a replication origin within the 5’ region of the chicken α-globin gene domain. J. Mol. Biol. 217 (1991) 595-598.
  • 12. Knezetic, J. A. and Felsenfeld, G., Identification and characterization of a chicken α-globin enhancer. Mol. Cell. Biol. 9 (1989) 893-901.
  • 13. Knezetic, J. D. and Felsenfeld, G., Mechanism of developmental regulation of απ the chicken embryonic α-globin gene. Mol. Cell. Biol. 13 (1993) 4632-4639.
  • 14. Recillas Targa, F. De Moura Gallo, C. V., Huesca, M., Schemer, K. and Marcaud, L., Silencer and enhancer elements located at the 3’-side of the chicken and duck α-globin-encoding gene domains. Gene 129 (1993) 229- 237.
  • 15. Recillas Targa, F., Razin, S. V., De Moura Gallo, C. V., Marcaud, L. and Scherrer, K. Silencer and enhancer elements and the framing structures of the chicken α-globin gene domain. In: Stamatoyannopoulos G., Editor. Ninth conference on hemoglobin switching. Orcas Islands, WA: Intercept, Andover (1995) 203-215.
  • 16. Reitman, M. and Felsenfeld, G., Mutational analysis of the chicken β-globin enhancer reveals two positive-acting domains. Proc. Natl. Acad. Sci. USA 85 (1988) 6267-6271.
  • 17. De Moura Gallo, C. V., Vassetzky, Y. S., Huesca, M. and Schemer, K. A transcription-dependent DNase I-hypersensitive site in a far upstream segment of the chicken α-globin gene domain coincides with a matrix attachment region. Biochem. Biophys. Res. Commun. 184 (1992) 1226- 1234.
  • 18. Razin, S. V., De Moura Gallo, C. V. and Scherrer, K., Characterization of the chromatin structure in the upstream region of the chicken α-globin gene domain. Mol. Gene. Genet. 242 (1994) 649-652.
  • 19. Vyas, P., Vickers, M. A., Simmons, D. L., Ayyub, H., Craddock, C. F. and Higgs, D. R., cis-acting sequences regulating expression of the human α-globin cluster lie within constitutively open chromatin. Cell 69 (1992) 781-793.
  • 20. Craddock, C. F., Vyas, P., Sharpe, J. A., Ayyub, H., Wood, W. G. and Higgs, D. R., Contrasting effects of alpha and beta globin regulatory elements on chromatin structures may be related to their different chromosomal environments. EMBO J. 14 (1995) 1718-1726.
  • 21. Razin, S. V., Chen, K., Ioudinkova, E. and Scherrer, K., Functional Analysis of DNA sequences located a cluster of DNase I hypersensitive sites colocalizing with a MAR element at the upstream border of the chicken α-globin gene domain. J. Cell. Biochem. 74 (1999) 38-49.
  • 22. Farache, G., Razin, S. V., Recillas Targa, F. and Scherrer, K., Organization of the 3’-boundary of the chicken a globin gene domain and characterization of a CRl-specific protein binding site. Nucl. Acids Res. 18 (1990) 401-409.
  • 23. Reitman, M. and Felsenfeld, G. Developmental regulation of topoisomerase II sites and DNase I-hypersensitive sites in the chicken β-globin locus. Mol. Cell. Biol. 10 (1990) 2774-2786.
  • 24. Reitman, M., Grasso, J. A., Blumenthal, R. and Lewit, P., Primary sequence, evolution and repetitive elements of the Gallus gallus (chicken) β-globin cluster. Genomics 18 (1993) 616-626.
  • 25. Saitoh, N., Bell, A. C., Recillas-Targa, F., West, A. G., Simpson, M., Pikaart, M. J. and Felsenfeld, G., Structural and functional conservation at the boundaries of the chicken β-globin domain. EMBO J. 19 (2000) 2315- 2322.
  • 26. Moreau, J., Matyash-Smirniaguina, L. and Scherrer, K., Systematic punctuation of eukaryotic DNA by AT-rich sequences. Proc. Natl. Acad. Sci. USA 78 (1981) 1341-1345.
  • 27. Moreau, J., Marcaud, L., Maschat, F., Kejzlarova-Lepesant, J., Lepesant, J. A. and Scherrer, K., A+T-rich linkers define functional domains in eukaryotic DNA. Nature 295 (1982) 260-262.
  • 28. Razin, S. V., Kekelidze, M. G., Lukanidin, E. M., Scherrer, K. and Georgiev, G. P., Replication origins are attached to the nuclear skeleton. Nucl. Acids Res. 14 (1986) 8189-8207.
  • 29. Berberich, S and Leffak, M., DNase-sensitive chromatin structure near a chromosomal origin of bidirectional replication of the avian α-globin locus. DNA Cell Biol. 12 (1993) 700-714.
  • 30. Razin, S. V., Petrov, P. and Hancock, R., Precise localization of the α-globin gene cluster within one of the 20- and 300-kilobase DNA fragment released by cleavage of chicken chromosomal DNA at topoisomerase II site in vivo: evidence that the fragment are DNA loops or domains. Proc. Natl. Acad. Sci. USA 88 (1991) 8515-8519.
  • 31. Recillas Targa, F., Razin, S. V., De Moura Gallo, C. V. and Scherrer, K., Excision close to matrix attachment regions of the entire chicken α-globin gene domain by nuclease S1 and characterization of the framing structures. Proc. Natl. Acad. Sci. USA 91 (1994) 4422-4426.
  • 32. Farache, G., Razin, S. V., Rzeszowska-Wolny, J., Moreau, J., Recillas Targa, F. and Scherrer, K., Mapping of structural and transcription-related matrix attachment sites in the α-globin gene domain of avian erythroblasts and erythrocytes. Mol. Cell. Biol. 10 (1990) 5349-5358.
  • 33. Bonifer, C., Long-distance chromatin mechanisms controlling tissue- specific gene locus activation. Gene 238 (1999) 277-289.
  • 34. Bonifer, C., Developmental regulation of eukaryotic gene loci. TIG 16 (2000) 310-315.
  • 35. Razin, S. V., Functional architecture of chromosomal DNA domains. Crit. Rev. Eukaryot. Gene Exp. 6 (1996) 247-269.
  • 36. Vassetsky, Y., Hair, A. and Méchali, M., Rearrangement of chromatin domains during development in Xenopus. Genes Dev. 14 (2000) 1541-1552.
  • 37. Stumph, W. E., Baez, M., Beattie, W. G., Tsai, M. and O’Malley, B., Characterization of deoxyribonucleic acid sequences at the 5’ and 3’ borders of the 100 kilobase pair ovalbumin gene domain. Biochemistry 22 (1983) 306-315.
  • 38. Prioleau, M.-N., Nony, P., Simpson, M. and Felsenfeld, G., An insulator element and condensed chromatin region separate the chicken β-globin locus from an independently regulated erythroid-specific folate receptor gene. EMBO J. 18 (1999) 4035-4048.
  • 39. Imaizumi, T., Diggelmann, H. and Scherrer, K., Demonstration of globin messenger sequences in giant nuclear precursors of messenger RNA of avian erythroblasts. Proc. Natl. Acad. Sci. USA 70 (1973) 1122-1126.
  • 40. Ashe, H. L., Monks, J., Wijgerde, M., Fraser, P. and Proudfoot, N. J., Intergenic transcription and transinduction of the human β-globin locus. Genes Dev. 11 (1997) 2494-2509.
  • 41. Sjakste, N., Iarovaia, O. V., Razin, S. V., Linares-Cruz, G., Sjakste, T., Le Gac, V., Zhao, Z. and Scherrer, K., A novel gene is transcribed in the chicken α-globin gene domain in the direction opposite to the globin genes. Mol. Gen. Genet. 262 (2000) 1012-1021.
  • 42. Vyas, P., Vickers, M. A., Picketts, D. J. and Higgs, D. R., Conservation of position and sequence of a novel, widely expressed gene containing the major human α-globin regulatory element. Genomic 29 (1995) 679-689.
  • 43. Barbour, V. M., Tufarelli, C., Sharpe, J. A., Smith, Z. E., Ayyub, H., Heinlein, C. A., Sloane-Stanley, J., Indrak, K., Wood, W. G. and Higgs, D. R., Alpha-thalassemia resulting from a negative chromosomal position effect. Blood 96 (2000) 800-807.
  • 44. Razin, S. V., Ioudinkova, E. S. and Scherrer, K., Extensive methylation of a part of the CpG island located 3.0-4.5 kbp upstream to the chicken alpha-globin gene cluster may contribute to silencing the globin genes in non-erythroid cells. J. Mol. Biol. 299 (2000) 845-852.
  • 45. Gribnau, J., Diderich, K., Pruzina, S., Calozolari, R. and Fraser, P., Intergenic transcription and developmental remodeling of chromatin subdomains in the human β-globin locus. Mol. Cell 5 (2000) 377-386.
  • 46. Choi, O.-R. and Engel, J. D., A 3’ enhancer is required for temporal and tissue-specific transcriptional activation of the chicken adult β-globin gene. Nature 323 (1986) 731-734.
  • 47. Hesse, J. E., Nickol, J. M., Lieber, M. R. and Felsenfeld, G., Regulated gene expression in transfected primary chicken erythrocytes. Proc. Natl. Acad. Sci. USA 83 (1986) 4312-4316.
  • 48. Foley, K. P. and Engel, J. D., Individual stage selector element mutations lead to reciprocal changes in β- vs ε-globin gene transcription: genetic confirmation of promoter competition during globin gene switching. Genes Dev. 6 (1992) 730-744.
  • 49. Reitman, M., Lee, E., Westphal, H. and Felsenfeld, G., Site-independent expression of the chicken βA-globin gene in transgenic mice. Nature 348 (1990) 749-752.
  • 50. Chung, J. H., Whiteley, M. and Felsenfeld, G., A 5’ element of the chicken β-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74 (1993) 505-514.
  • 51. Abruzzo, L. V. and Reitman, M., Enhancer activity of upstream hypersensitive site 2 of the chicken β-globin cluster is mediated by GATA sites. J. Biol. Chem. 269 (1994) 32565-32571.
  • 52. Mason, M. M., Lee, E., Westphal, H. and Reitman, M., Expression of the chicken β-globin gene cluster in mice: correct developmental expression and distributed control. Mol. Cell. Biol. 15 (1995) 407-414.
  • 53. Bulger, M., van Doorminck, J. H., Saitoh, N., Telling, A., Farrell, C., Bender, M. A., Felsenfeld, G., Axel, R., Groudine, M. and von Doorninck, J. H., Conservation of sequence and structure flanking the mouse and human β-globin loci: the β-globin genes are embedded within an array of odorant receptor genes. Proc, Natl. Acad. Sci. USA 96 (1999) 5129-5134.
  • 54. Staines, D. M. and Thomas, J. O., A sequence with homology to human HPFH-linked enhancer elements and to a family of G-protein linked membrane receptor genes is located downstream of the chicken β-globin locus. Gene 234 (1999) 345-352.
  • 55. Bell, A. C., West, A. G. and Felsenfeld, G., The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98 (1999) 387- 396.
  • 56. Recillas-Targa, F., Bell, A. C. and Felsenfeld, G., Positional enhancer-blocking activity of the chicken β-globin insulator in transiently transfected cells. Proc. Natl. Acad. Sci. USA 96 (1999) 14354-14359.
  • 57. Pikaart, M. J., Recillas-Targa, F. and Felsenfeld, G., Loos of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev. 12 (1998) 2852-2862.
  • 58. Bell, A. C. and Felsenfeld, G., Methylation of a CTCF-dependent boundary controls imprinting expression of the Igf2 gene. Nature 405 (2000) 482-485.
  • 59. Francastel, C., Walters, M. C., Groudine, M. and Martin, D. I., A functional enhancer suppresses silencing of a transgene and prevents its localization close to centromeric heterochromatin. Cell 99 (2000) 259-269.
  • 60. Schubeler, D., Francastel, C., Cimbora, D. M., Reik, A., Martin, D. I. and Groudine, M., Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human β-globin locus. Genes Dev. 14 (2000) 940-950.
  • 61. Forrester, W. C., Fernández, L. A. and Grosschedl, R., Nuclear matrix attachment regions antagonize methylation-dependent repression of long- range enhancer-promoter interactions. Genes Dev. 13 (1999) 3003-3014.
  • 62. Bell, A. C. and Felsenfeld, G., Stopped at the border: boundaries and insulators. Curr. Opin. Genet. Dev. 9 (1999) 191-198.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-a3fa65e3-f206-4db7-88bb-6f35d273765a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.