PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 56 | 3 |

Tytuł artykułu

Sulfate permeases - phylogenetic diversity of sulfate transport

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
 Sulfate uptake, the first step of sulfate assimilation in all organisms, is a highly endoergic, ATP requiring process. It is under tight control at the transcriptional level and is additionally modulated by posttranslational modifications, which are not yet fully characterized. Sulfate anion is taken up into the cell by specific transporters, named sulfate permeases, located in the cell membrane. Bacterial sulfate permeases differ significantly from the eukaryotic transporters in their evolutionary origins, structure and subunit composition. This review focuses on the diversity and regulation of sulfate permeases in various groups of organisms.

Wydawca

-

Rocznik

Tom

56

Numer

3

Opis fizyczny

p.375-384,fig.,ref.

Twórcy

autor
  • Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
autor

Bibliografia

  • Aravind L, Koonin EV (2000) The STAS domain - a link between anion transporters and antisigma-factor antagonists. Curr Biol 10: R53-R55. 
  • Arifuzzaman M, Maeda M, Itoh A, Nishikata K, Takita C, Saito R, Ara T, Nakahigashi K, Huang HC, Hirai A, Tsuzuki K, Nakamura S, Altaf-Ul-Amin M, Oshima T, Baba T, Yamamoto N, Kawamura T, Ioka-Nakamichi T, Kitagawa M, Tomita M, Kanaya S, Wada C, Mori H (2006) Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res 16: 686-691. 
  • Arst HN Jr (1968) Genetic analysis of the first steps of sulphate metabolism in Aspergillus nidulans. Nature 219: 268-270. 
  • Baxter I, Muthukumar B, Park HC, Buchner P, Lahner B, Danku J, Zhao K, Lee J, Hawkesford MJ, Guerinot ML, Salt DE (2008) Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet 4: e1000004. 
  • Beck L, Markovich D (2000) The mouse Na(+)-sulfate cotransporter gene Nas1. Cloning, tissue distribution, gene structure, chromosomal assignment, and transcriptional regulation by vitamin D. J Biol Chem 275: 11880-11890. 
  • Breton A, Surdin-Kerjan Y (1977) Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study. J Bacteriol 132: 224-232. 
  • Buchner P, Takahashi H, Hawkesford MJ (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55: 1765-1773. 
  • Chen HC, Yokthongwattana K, Newton AJ, Melis A (2003) SulP, a nuclear gene encoding a putative chloroplast-targeted sulfate permease in Chlamydomonas reinhardtii. Planta 218: 98-106. 
  • Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y (1997) Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 145: 627-635. 
  • Chernova MN, Jiang L, Shmukler BE, Schweinfest CW, Blanco P, Freedman SD, Stewart AK, Alper SL (2003) Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes. J Physiol 549: 3-19. 
  • Crompton M, Palmieri F, Capano M, Quagliariello E (1974a) The transport of sulphate and sulphite in rat liver mitochondria. Biochem J 142: 127-137. 
  • Crompton M, Palmieri F, Capano M, Quagliariello E (1974b) The transport of thiosulphate in rat liver mitochondria. FEBS Lett 46: 247-250. 
  • Davies JP, Yildiz FH, Grossman AR (1999) Sac3, an Snf1-like serine/threonine kinase that positively and negatively regulates the responses of Chlamydomonas to sulfur limitation. Plant Cell 11: 1179-1190. 
  • Felce J, Saier MH Jr (2004) Carbonic anhydrases fused to anion transporters of the SulP family: evidence for a novel type of bicarbonate transporter. J Mol Microbiol Biotechnol 8: 169-176. 
  • Fiermonte G, Dolce V, Arrigoni R, Runswick MJ, Walker JE, Palmieri F (1999) Organization and sequence of the gene for the human mitochondrial dicarboxylate carrier: evolution of the carrier family. Biochem J 344: 953-960. 
  • Fitzpatrick KL, Tyerman SD, Kaiser BN (2008) Molybdate transport through the plant sulfate transporter SHST1. FEBS Lett 582: 1508-1513. 
  • Gineste R, Sirvent A, Paumelle R, Helleboid S, Aquilina A, Darteil R, Hum DW, Fruchart JC, Staels B (2008) Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity. Mol Endocrinol 22: 2433-2447. 
  • Gremel G, Marcel Dorrer M, Schmoll M (2008) Sulphur metabolism and cellulase gene expression are connected processes in the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei). BMC Microbiol 8: 174. 
  • Hansen J, Johannesen PF (2000) Cysteine is essential for transcriptional regulation of the sulfur assimilation genes in Saccharomyces cerevisiae. Mol Gen Genet 263: 535-542. 
  • Hastbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A, Coloma A, Lovett M, Buckler A, Kaitila I, Lander ES (1994) The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78: 1073-1087. 
  • Hawkesford MJ (2000) Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency. J Exp Bot 51: 131-138. 
  • Hawkesford MJ (2003) Transporter gene families in plants: the sulphate transporter gene family - redundancy or specialization? Physiol Plant 117: 155-163.
  • Hawkesford MJ (2008) Uptake, distribution and subcellular transport of sulfate. In: Sulfur Metabolism in Phototrophic Organisms. Hell R, Dahl C, Knaff DB, Leustek T, eds, pp 15-30. Springer, Dordrecht.
  • Hawkesford MJ, Smith FW (1997) Molecular biology of higher plant sulphate transporters. In Sulfur Metabolism in Higher Plants: Molecular, Ecophysiological and Nutritional Aspects. Cram WJ, De Kok LJ, Brunold C, Rennenberg H, eds, pp 13-25. Backhuys Publishers, Leiden, The Netherlands.
  • Hryniewicz M, Sirko A, Pałucha A, Böck A, Hulanicka D (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: identification of a gene encoding a novel protein involved in thiosulfate binding. J Bacteriol 172: 3358-3366. 
  • Iwanicka-Nowicka R, Hryniewicz MM (1995) A new gene, cbl, encoding a member of the LysR family of transcriptional regulators belongs to Escherichia coli cys regulon. Gene 166: 11-17. 
  • Jiang Z, Grichtchenko II, Boron WF, Aronson PS (2002) Specificity of anion exchange mediated by mouse Slc26a6. J Biol Chem 277: 33963-33967. 
  • Kaiser P, Flick K, Wittenberg C, Reed SI (2000) Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4. Cell 102: 303-314. 
  • Kasajima I, Ohkama-Ohtsu N, Ide Y, Hayashi H, Yoneyama T, Suzuki Y, Naito S, Fujiwara T (2007) The BIG gene is involved in regulation of sulfur deficiency-responsive genes in Arabidopsis thaliana. Physiol Plant 129: 351-363.
  • Kataoka T, Hayashi N, Yamaya T, Takahashi H (2004a) Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol 136: 4198-4204. 
  • Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004b) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16: 2693-2704. 
  • Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57: 313-321. 
  • Kertesz MA (2001) Bacterial transporters for sulfate and organosulfur compounds. Res Microbiol 152: 279-290. 
  • Ketter JS, Marzluf GA (1988) Molecular cloning and analysis of the regulation of cys-14, a structural gene of the sulfur regulatory circuit of Neurospora crassa. Mol Cell Biol 8: 1504-1508. 
  • Kredich NM (1992) The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli. Mol Microbiol 6: 2747-2753. 
  • Kredich NM (1996) Biosynthesis of cysteine. In Escherichia coli and Salmonella: Cellular and Molecular Biology. Neidhardt FC, eds, pp 514-527. ASM Press: Washington, D.C.
  • Laudenbach DE, Grossman AR (1991) Characterization and mutagenesis of sulfur-regulated genes in a cyanobacterium: evidence for function in sulfate transport. J Bacteriol 173: 2739-2750. 
  • Lee A, Beck L, Markovich D (2003) The mouse sulfate anion transporter gene Sat1 (Slc26a1): cloning, tissue distribution, gene structure, functional characterization, and transcriptional regulation thyroid hormone. DNA Cell Biol 22: 19-31. 
  • Lee H, Hubbert ML, Osborne TF, Woodford K, Zerangue N, Edwards PA (2007) Regulation of the sodium/sulfate co-transporter by farnesoid X receptor alpha. J Biol Chem 282: 21653-21661. 
  • Lee HJ, Sagawa K, Shi W, Murer H, Morris ME (2000) Hormonal regulation of sodium/sulfate co-transport in renal epithelial cells. Proc Soc Exp Biol Med 225: 49-57. 
  • Leustek T, Saito K (1999) Sulfate transport and assimilation in plants. Plant Physiol 120: 637-644. 
  • Lewandowska M, Sirko A (2008) Recent advances in understanding plant response to sulfur-deficiency stress. Acta Biochim Polon 55: 457-471. 
  • Li Q, Zhou L, Marzluf GA (1996) Functional in vivo studies of the Neurospora crassa cys-14 gene upstream region: importance of CYS3-binding sites for regulated expression. Mol Microbiol 22: 109-117. 
  • Lohi H, Kujala M, Makela S, Lehtonen E, Kestila M, Saarialho-Kere U, Markovich D, Kere J (2002) Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9. J Biol Chem 277: 14246-14254. 
  • Lohi H, Lamprecht G, Markovich D, Heil A, Kujala M, Seidler U, Kere J (2003) Isoforms of SLC26A6 mediate anion transport and have functional PDZ interaction domains. Am J Physiol Cell Physiol 284: C769-779. 
  • Mansilla MC, de Mendoza D (2000) The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. Microbiology 146: 815-821. 
  • Markovich D (2001) Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81: 1499-1533. 
  • Markovich D, Murer H (2004) The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflugers Arch 447: 594-602. 
  • Markovich D, Murer H, Biber J, Sakhaee K, Pak C, Levi M (1998) Dietary sulfate regulates the expression of the renal brush border Na/Si cotransporter NaSi-1. J Am Soc Nephrol 9: 1568-1573. 
  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42: 305-314. 
  • Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H (2006) Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18: 3235-3251. 
  • Marzluf GA (1997) Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol 51: 73-96. 
  • Mio K, Kubo Y, Ogura T, Yamamoto T, Arisaka F, Sato C (2008) The motor protein prestin is a bullet-shaped molecule with inner cavities. J Biol Chem 283: 1137-1145. 
  • Moseley JL, Gonzalez-Ballester D, Pootakham W, Bailey S, Grossman AR (2009) Genetic interactions between regulators of Chlamydomonas phosphorus and sulfur deprivation responses. Genetics 181: 889-905. 
  • Natorff R, Sieńko M, Brzywczy J, Paszewski A (2003) The Aspergillus nidulans metR gene encodes a bZIP protein which activates transcription of sulphur metabolism genes. Mol Microbiol 49: 1081-1094. 
  • Paietta JV (1992) Production of the CYS3 regulator, a bZIP DNA-binding protein, is sufficient to induce sulfur gene expression in Neurospora crassa. Mol Cell Biol 12: 1568-1577. 
  • Palmieri L, Picault N, Arrigoni R, Besin E, Palmieri F, Hodges M (2008) Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Biochem J 410: 621-629. 
  • Palmieri L, Vozza A, Agrimi G, De Marco V, Runswick MJ, Palmieri F, Walker JE (1999) Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. J Biol Chem 274: 22184-22190. 
  • Parmar S, Buchner P, Hawkesford MJ (2007) Leaf developmental stage affects sulfate depletion and specific sulfate transporter expression during sulfur deprivation in Brassica napus L. Plant Biology 9: 647-653. 
  • Paszewski A, Grabski J (1974) Regulation of S-amino acids biosynthesis in Aspergillus nidulans. Role of cysteine and-or homocysteine as regulatory effectors. Mol Gen Genet 132: 307-320. 
  • Paszewski A, Natorff R, Piotrowska M, Brzywczy J, Sieńko M, Grynberg M, Pizzinini E, Turner G (2000) Regulation of sulfur amino acid biosynthesis in Aspergillus nidulans: physiological and genetical aspects. In Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Haupt P, ed, pp 93-105. Berne, Switzerland.
  • Paszewski A, Ono BI (1992) Biosynthesis of sulphur amino acids in Saccharomyces cerevisiae: regulatory roles of methionine and S-adenosylmethionine reassessed. Curr Genet 22: 273-275. 
  • Piłsyk S, Natorff R, Sieńko M, Paszewski A (2007) Sulfate transport in Aspergillus nidulans: a novel gene encoding alternative sulfate transporter. Fungal Genet Biol 44: 715-725. 
  • Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci USA 101: 18228-18233. 
  • Regeer RR, Nicke A, Markovich D (2007) Quaternary structure and apical membrane sorting of the mammalian NaSi-1 sulfate transporter in renal cell lines. Int J Biochem Cell Biol 39: 2240-2251. 
  • Rouached H, Berthomieu P, El Kassis E, Cathala N, Catherinot V, Labesse G, Davidian JC, Fourcroy P (2005) Structural and functional analysis of the C-terminal STAS (sulfate transporter and anti-sigma antagonist) domain of the Arabidopsis thaliana sulfate transporter SULTR1.2. J Biol Chem 280: 15976-15983. 
  • Rouillon A, Barbey R, Patton EE, Tyers M, Thomas D (2000) Feedback-regulated degradation of the transcriptional activator Met4 is triggered by the SCF(Met30) complex. EMBO J 19: 282-294. 
  • Rückert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Pühler A, Kalinowski J (2005) Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. BMC Genomics 6: 121. 
  • Sagawa K, DuBois DC, Almon RR, Murer H, Morris ME (1998) Cellular mechanisms of renal adaptation of sodium dependent sulfate cotransport to altered dietary sulfate in rats. J Pharmacol Exp Ther 287: 1056-1062. 
  • Saier MH Jr (1999) A functional-phylogenetic system for the classification of transport proteins. J Cell Biochem (Suppl) 32-33: 84-94. 
  • Sandal NN, Marcker KA (1994) Similarities between a soybean nodulin, Neurospora crassa sulphate permease II and a putative human tumour suppressor. Trends Biochem Sci 19: 19. 
  • Schaechinger TJ, Oliver D (2007) Nonmammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers. Proc Natl Acad Sci USA 104: 7693-7698. 
  • Scheffel F, Demmer U, Warkentin E, Hülsmann A, Schneider E, Ermler U (2005) Structure of the ATPase subunit CysA of the putative sulfate ATP-binding cassette (ABC) transporter from Alicyclobacillus acidocaldarius. FEBS Lett 579: 2953-2958. 
  • Sirko A, Hryniewicz M, Hulanicka D, Böck A (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol 172: 3351-3357. 
  • Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci USA 92: 9373-9377. 
  • Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, Vanden Berg PJ, Belcher AR, Warrilow AG (1997) Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J 12: 875-884. 
  • Takahashi H, Asanuma W, Saito K (1999) Cloning of an Arabidopsis cDNA encoding a chloroplast localizing sulfate transporter isoform. J Exp Bot 50: 1713-1714.
  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23: 171-182. 
  • Tejada-Jiménez M, Llamas A, Sanz-Luque E, Galván A, Fernández E (2007) A high-affinity molybdate transporter in eukaryotes. Proc Natl Acad Sci USA 104: 20126-20130. 
  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61: 503-532. 
  • Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N, Fujiwara T (2007) An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc Natl Acad Sci USA 104: 18807-18812. 
  • van de Kamp M, Pizzinini E, Vos A, van der Lende TR, Schuurs TA, Newbert RW, Turner G, Konings WN, Driessen AJ (1999) Sulfate transport in Penicillium chrysogenum: cloning and characterization of the sutA and sutB genes. J Bacteriol 181: 7228-7234. 
  • van de Kamp M, Schuurs TA, Vos A, van der Lende TR, Konings WN, Driessen AJ (2000) Sulfur regulation of the sulfate transporter genes sutA and sutB in Penicillium chrysogenum. Appl Environ Microbiol 66: 4536-4538. 
  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29: 465-473. 
  • Yoshimoto N, Inoue E, Watanabe-Takahashi A, Saito K, Takahashi H (2007) Posttranscriptional regulation of high-affinity sulfate transporters in Arabidopsis by sulfur nutrition. Plant Physiol 145: 378-388. 
  • Zhao A, Yu J, Lew JL, Huang L, Wright SD, Cui J (2004) Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets. DNA Cell Biol 23: 519-526. 
  • Zolotarev AS, Unnikrishnan M, Shmukler BE, Clark JS, Vandorpe DH, Grigorieff N, Rubin EJ, Alper SL (2008) Increased sulfate uptake by E. coli overexpressing the SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis. Comp Biochem Physiol A Mol Integr Physiol 149: 255-266.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-a3fa46d5-9d71-424b-a3f5-6a4498df41f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.