PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | 43 | 4 |

Tytuł artykułu

Wzrost roslin drzewiastych w warunkach podwyzszonego stezenia dwutlenku wegla

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

PL

Abstrakty

EN
The rapid increase in the concentration of atmospheric carbon dioxide may exert a substantial impact on the biosphere. The paper presents the effects of elevated CO₂ concentration on the growth of tree species on the base of literature data. Both physiological responses as weil as changes in growth and development of plants are discussed. Furthermore, water and nutrient requirements of trees grown under high CO₂ are considered. Practical aspects of the problem are also included.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

43

Numer

4

Opis fizyczny

s.41-49,bibliogr.

Twórcy

autor
  • Instytut Sadownictwa i Kwiaciarstwa, Skierniewice

Bibliografia

  • [1] Bazzaz F.A., Coleman J.K., Morse S.R. 1990. Growth responses of seven co-occurring tree species of the northeastern United States to elevated CO₂. Can. J. For. Res. 20: 1479-1484.
  • [2] Berntson G.M., McConnaughay K.D.M., Bazzaz F.A. 1993. Elevated CO₂ alters deployment of roots in "small" growth containers. Oecologia 94: 558-564.
  • [3] Bowes G. 1991. Growth at elevated CO₂: pbotosynthetic responses mediated through Rubisco.Plant Cell Environ. 14: 795-806.
  • [4] Brown K., Higginbotham K.O. 1986. Effects of carbon dioxide enrichment and nitrogen supply on growth of boreal tree seedlings. Tree Physiol. 2: 223-232.
  • [5] Bunce J.A. 1990. Short- and long-term inhibition of respiratory carbon dioxide efflux by elevated carbon dioxide. Ann. Bot. 65: 637-642.
  • [6] Bunce J.A. 1992. Stomatal conductance, photosynthesis and respiration of temperature deciduous tree seedlings grown outdoors at an elevated concentration of carbon dioxide. Plant Cell Environ. 15: 541-549.
  • [7] Campagna M.A., Margolis H.A. 1989. Influence of short-term atmospheric CO₂ enrichment on growth, allocation patterns, and biochemistry of black spruce seedlings at different stages of developement. Can. J. For. Res. 19: 773-782.
  • [8] Canham A.E., McCavish W.J. 1981. Some effects of CO₂, daylength and nutrition on the growth of young forest tree plants. I. In the seedling stage. Forestry 54: 169-182.
  • [9] Conroy J.P., Barlow E.W.R., Bevege D.I. 1986. Response of Pinus radiata seedlings to carbon dioxide enrichment at different levels of water and phosphorus: growth, morphology and anatomy. Ann. Bot. 57: 165-177.
  • [10] Conroy J.P., Milham P.J., Barlow E.W.R. 1992. Effect of nitrogen and phosphorus availability on the growth response of Eucalyptus grandis to high CO₂. Plant Cell Environ. 15: 843-847.
  • [11] Conroy J.P., Milham P.J., Mazur M., Barlow E.W.R. 1990a. Growth, dry weight partitioning and wood properties of Pinus radiata D. Don after 2 years of CO₂ enrichment. Plant Cell Environ. 13: 329-337.
  • [12] Conroy J.P., Milham P.J., Reed M.L., Barlow E.W. 1990b. Increases in phosphorus requirements for CO₂-enriched pine species. Plant Physiol. 92: 977-482.
  • [13] Eamus D., Jarvis P.G. 1989. The direct effect uf increase in the global atmospheric CO₂ concentration on natural and commercial trees and forests. Adv. Ecol. Res. 19: 1-55.
  • [14] Hardh J.E. 1966. Trials with carbon dioxide, light and growth substances on forest tree plants. Acta For. Fenn. 81: 1-10.
  • [15] Harrington J.B. 1987. Climatic change: a review of causes. Can. J. For. Res. 17: 1313-1339.
  • [16] Hilbert D.W., Reynolds J.F. 1991. A model allocating growth among leaf proteins, shoot structure, and root biomass to produce balanced activity. Ann. Bol. 68: 417-425.
  • [17] Idso S.B., Kimball B.A. 1992. Effects of atmospheric CO₂ enrichment on photosynthesis, respiration, and growth of sour orange trees. Plant Physiol. 99: 341-343.
  • [18] Johnsen K.H. 1993. Growth and ecophysiological responses of black spruce seedlings to elevated CO₂ under varied water and nutrient additions. Can. J. For. Res. 23: 1033-1042.
  • [19] Kaushal P., Guehl J.M., Aussenac G. 1989. Differential growth response to atmospheric carbon dioxide enrichment in seedlings of Cedrus atlantica and Pinus nigra ssp. Laricio var. Corsicana. Can. J. For. Res. 19: 1351-1358.
  • [20] Kienast F., Luxmoore R.J. 1988. Tree-ring analysis and cunifer growth responses to increased atmospheric CO₂ levels. Oecologia 76: 487-495.
  • [21] Kimball B.A. 1983. Carbon dioxide and agricultural yield: an assenblage and analys is of 430 prior observations. Agron. J. 75: 779-788.
  • [22] Kunneman B.P.A.M. 1993. Effect of propagation system, light, temperature and CO₂ on rooting of cuttings. Research Station for Nursely Stock, Boskoop. Annual Report 1902: 13.
  • [23] Loach K., Whalley D.N. 1975. Use of light, CO₂ enrichment and growth regulators in the overwintering of hardy ornamental nursery stock cuttings. Acta Hort. 54: 105-116.
  • [24] Margolis H.A., Vezina L-P. 1990. Atmospheric CO₂ enrichment and the developement of frost hardiness in containerized black spruce seedlings. Can. J. For. Res. 20: 1392-1398.
  • [25] Mattson R.H., Widmer R.E. 1971. Year round effects of carbon dioxide supplemented atmospheres on greenhouse rose (Rosa hybrida) production. J. Amer. Soc. Hort. Sci. 96: 487-488.
  • [26] McConnaughay K.D.M., Berntson G.M., Bazzaz F.A. 1993. Limitations to CO₂-induced growth enhancement in pot studies. Oecologia 94: 550-557.
  • [27] Miao S.L., Wayne P.M., Bazzaz F.A. 1992. Elevated CO₂ differentially alters the responses of cooccurring birch and maple seedlings to a moisture gradient. Oecologia 90: 300-304.
  • [28] Moe R. 1977. Effects of light, temperature and CO₂ on the growth of Campanula isophylla stock plants and on the subsequent growth and development of their cuttings. Scientia Hort. 6: 129-141.
  • [29] Mortensen L.M. 1987. Review: CO₂ enrichment in greenhouses. Crop responses. Scientia Hortic. 33: 1-25.
  • [30] Mousseau M., Enoch Z.H. 1989. Carbon dioxide enrichment reduces shoot growth in chesnut seedlings (Castanea sativa Mill.). Plant Cell Environ. 12: 927-934.
  • [31] Mousseau M., Saugier B. 1992. The direct effect of increased CO₂ on gas exchange and growth of forest tree species. J. Exp. Bot. 43: 1121-1130.
  • [32] Norby R.J. 1987. Nodulation and nitrogenase activity in nitrogen-fixing woody plants stimulated by CO₂ enrichment of the atmosphere. Physiol. Plant. 71: 77-82.
  • [33] Norby R.J., Gunderson C.A., Wullschleger S.D., O'Neill E.G., McCracken M.K. 1992. Productivity and compensatory responses of yellow-poplar trees in elevated CO₂. Nature 357: 322-324.
  • [34] Norby R.J., O'Neill E.G. 1991. Leaf area compensation and nutrient interactions in CO₂-enriched seedlings of yellow-poplar (Liriodendron tulipifera L.). New Phytol. 117: 515-528.
  • [35] O'Neill E.G., Luxmoore R.J., Norby R.J. 1987. Increases in mycorrhizal colonization and seedling growth in Pinus echinata and Quercus alba in enriched atmosphere. Can. J. For. Res. 17: 878-883.
  • [36] Pettersson R., McDonald A.J.S. 1992. Effects of elevated carbon dioxide concentration on photosynthesis and growth of small birch plants (Betula pendula Roth.) at optimal nutrition. Plant Cell Environ. 15: 911-919.
  • [37] Quick W.P., Chaves M.M., Wendler R., David M., Rodrigues M.L., Passarinho J.A., Pereira J.S., Adcock M.D., Leegood R.L., Stitt M. 1992. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant Cell Environ. 15: 25-35.
  • [38] Radoglou K.M., Jarvis P.G. 1990. Effects of CO₂ enrichment on four poplar clones. I. Growth and leaf anatomy. Ann. Bot. 65: 617-626.
  • [39] Rochefort L., Bazzaz F.A. 1992. Growth response to elevated CO₂ in seedlings of four co-occurring birch species. Can. J. For. Res. 22: 1583-1587.
  • [40] Rogers H.H., Peterson C.M., McCrimmon J.N., Cure J.D. 1992. Response of plant roots to elevated atmospheric carbon dioxide. Plant Cell Environ. 15: 749-752.
  • [41] Sage R.F., Pearcy R.W., Seemann J.R. 1987. The nitro gen use efficiency of C₃ and C₄ plants. III. Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) and Amarantlius retroflexus (L.). Plant Physiol. 89: 590-596.
  • [42] Samuelson L.J., Seiler J.R. 1993. Interactive role of elevated CO₂, nutrient limitations, and water stress in the growth responses of red spruce seedlings. For. Sci. 39: 348-358.
  • [43] Sinclair T.R. 1992. Mineral nutrition and plant growth response to climate change. J. Exp. Bot. 43: 1141-1146.
  • [44] Sionit N., Strain B.R., Hellmers H., Riechers G.H., Jaeger C.H. 1985. Long-term atmospheric CO₂ enrichment affects the growth and development of Liquidambar styraciflua and Pinus taeda seedlings. Can. J. For. Res. 15: 468-471.
  • [45] Sorensen S.E. 1978. CO₂ as an aid to rooting. Combined Proceeding International Plant Propagators Society 28: 175-176.
  • [46] Stuiver M. 1982. Atmosferic carbon dioxide in the 19th century. Science 202: 1109.
  • [47] Thomas J.F., Harvey C.N. 1983. Leaf anatomy of four species grown under continuous CO₂ enrichment. Bot. Gaz. 144: 303-309.
  • [48] Tolley L.C., Strain B.R. 1984. Effects of CO₂ enrichment and water stress on growth of Liquidambar styraciflua and Pinus taeda seedlings. Can. J. Bot. 62: 2135-2139.
  • [49] Williams W.E., Garbutt K., Bazzaz F.A., Vitousek P.M. 1986. The response of plants to elevated CO₂. IV. Two deciduous-forest tree communities. Oecologia 69: 454-459.
  • [50] Woodward F.I., Thompson G.B., McKee I.F. 1991. The effects of elevated concentrations of carbon dioxide on individual plants, populations, communities and ecosystems. Ann. Bot. 61 (Suppl.): 23-38.
  • [51] Wullschleger S.O., Norby R.J. 1992. Respiratory cost of leaf growth and maintenance in white oak samplings exposed to atmospheric CO₂ enrichment. Can. J. For. Res. 22: 1717-1721.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-a325491c-0a09-4703-b738-92bf84d7f2e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.