PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 57 | 4 |

Tytuł artykułu

Tocotrienols in three rye varieties: from the grain to the bread

Treść / Zawartość

Warianty tytułu

PL
Tokotrienole trzech odmian zyta: od ziarniaka do chleba

Języki publikacji

EN

Abstrakty

EN
In this study the contribution of tocotrienols to the total tocols of three varieties of rye grain (Amilo, Warko and Dańkowskie Złote), their morphological fractions, milling products and breads made from them was shown. Tocotrienols (a-T3, b-T3, g-T3) and tocopherols (a-T, b-T, g-T, d-T) were extracted with methanol and separated by HPLC. The study showed that the richest source of tocotrienols was the whole grain of Dańkowskie Złote followed by the whole grain of Warko and Amilo cultivars. The tocotrienols found in the whole grain of three rye cultivars were a-T3 and b-T3 while the pool of tocopherols was formed by a-T, b-T and small quantity of g-T. Tocotrienols found in the whole grain or in endosperm with embryo fraction contributed to more than 50% of total tocols, however those noted in pericarb with testa fraction were about of 90% of total tocols. The highest level of tocotrienols (a-T3 + b-T3) was noted in rye flours with extraction rate of 100% of the three cultivars. The milling process decreased contents of tocotrienols, however flours with extraction rate from 100 to 90% kept the T3/T ratio above one, whereas for flour with extraction rate of 70% this ratio was less than one. The percentage contribution of a-T3 and b-T3 to the total tocols content in whole meal and brown flours was within a range of 23–35% but that noted for light flours was within a lower range. The baking process caused a significant decrease in the content of tocotrienols as well as tocopherols. The level of tocotrienols in whole meal rye breads was about five, three and two times higher when compared to the bread formulated on brown flours originated from Amilo, Warko and Dańkowskie Złote. Moreover, the level of tocotrienols found in breads formulated on light flour (extraction rate of 70%) was about 2–13% of that noted in breads based on whole meal flour.
PL
W pracy przedstawiono udział tokotrienoli w ogólnej puli tokoli składających się na aktywność witaminy E w trzech krajowych odmianach żyta, produktach przemiału oraz chlebach wypieczonych metodą tradycyjną bez dodatku drożdży. Poziom tokotrienoli (T3) (a-T3, b-T3, g-T3) i tokoferoli (T) (a-T, b-T, g-T, d-T) analizowano metodą HPLC. W ziarniakach i jego frakcjach morfologicznych spośród analizowanych tokotrienoli dominującym był a-T3 i b-T3. W ziarniakach zawartość tokotrienoli była wyższa niż tokoferoli a proces przemiału ziarna żyta w kierunku mąk jasnych powodował obniżenie ich zawartości. Dalszy spadek zawartości tych związków następował w wyniku wypieku chleba. Stwierdzono, że chleb wypieczony z mąki pochodzącej z pełnego przemiału (wyciąg maki 100%) charakteryzował się ich najwyższą zawartością tokotrienoli.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

57

Numer

4

Opis fizyczny

p.441-446,fig.,ref.

Twórcy

autor
  • Polish Academy of Sciences, Tuwima 10, 10-718 Olsztyn, Poland
autor
autor

Bibliografia

  • 1. Andlauer W., Furst P., Does cereals reduce the risk of cancer? Cereal Foods World, 1999, 44, 76–78.
  • 2. Birrringer M., Pfuger P., Kluth D., Landes N., Brigelius-Flohe R., Identities and differences in the metabolism of tocotrienols and tocopherols in HepG2 cells. J. Nutr., 2002, 132, 3113–3118.
  • 3. Burton G.W., Traber M.G., Vitamin E: antioxidant activity, biokinetics and bioavailability. Annu. Rev. Nutr., 1990, 10, 357–382.
  • 4. Bushuk W., Rye production and uses worldwide. Cereal Chem., 2001, 46, 70–73.
  • 5. Chao J.T., Gapor A., Theriault A., Inhibitory effect of delta-tocotrienol, a HMG CoA reductase inhibitor, on monocyte-endothelial cell adhesion. J. Nutr. Sci. Vitamol., 2002, 48, 332–337.
  • 6. Faostat data, 2006, [http://faostat.fao.org].
  • 7. Fratianni A., Caboni M.F., Irano M., Panfili G., A critical comparison between traditional methods and supercritical carbon oxide extraction for the determination of tocochromanols in cereals. Eur. Food Res. Technol., 2002, 215, 353–358.
  • 8. Gąsiorowski H., Żyto – chemia i technologia. Poznań, 1994, PWRiL, p. 106–107 (in Polish).
  • 9. Holasova M., Distribution of tocopherols and tocotrienols in the main products of wheat and rye milling. Potrav. Vedy, 1997, 15, 343–350.
  • 10. Holasova M., Velisek J., Davidek J., Tocopherol and tocotrienol contents in cereal grains. Potrav. Vedy, 1995, 13, 409–417.
  • 11. Horvath G., Wessjohann L., Bigirimana J., Jansen M., Guisez Y., Caubergs R., Horemans N., Differential distribution of tocopherols and tocotrienols in photosynthetic and non-photosynthetic tissues. Phytochemistry, 2006, 67, 1185–1195.
  • 12. Kamal-Eldin A., Appelqvist L.A., The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 1996, 31, 671–701.
  • 13. Kamat J., Devasagayam T.P.A., Tocotrienols from palm oil as potent inhibitors of lipid peroxidation and protein oxidation in rat brain mitochondria. Neurosci. Lett., 1995, 195, 179–182.
  • 14. Khanna S., Roy S., Ryu H., Bahadduri P., Swaan P.W., Ratan R.R., Sen C.K., Molecular basis of vitamin E action: tocotrienol modulates 12-lipoxygenase, a key mediator of glutamate- induced neurodegeneration. J. Biol. Chem., 2003, 278, 43508– 43515.
  • 15. Mutalib M.S.A., Khazaai H., Wahle K.W.J., Palm-tocotrienol rich fraction (TRF) is more effective inhibitor of LDL oxidation and endothelial cell lipid peroxidation than alpha-tocopherol in vitro. Food Res. Int., 2003, 36, 405–413.
  • 16. Nesaretnam K., Devasagayam T.P.A., Singh B.B., Basiron Y., Influence of palm oil or its tocotrienol-rich fraction on lipid peroxidation potential on rat liver mitochondria and microsomes. Biochem. Mol. Biol. Int., 1993, 30, 159–167.
  • 17. Nilsson M., Aman P., Harkonen H., Bach Knudse K.E., Mazur W., Adlercreutz H., Content of nutrients and lignans in roller milled fractions of rye. J. Sci. Food Agric., 1997, 73, 143–148.
  • 18. Panfili G., Fratianni A., Irano M., Normal phase high-performance liquid chromatography method for the determination of tocopherols and tocotrienols in cereals. J. Agric. Food Chem., 2003, 51, 3940–3944.
  • 19. Peterson D.M., Qureshi A.A., Genotype and environmental effects on barley and oats. Cereal Chem., 1993, 70, 157–162.
  • 20. Pearce B.C., Parker R.A., Deason M.E., Qureshi A.A., Wright J.J., Hypercholesterolemic activity of synthetic and natural tocotrienols. J. Med. Chem., 1992, 35, 3595–3606.
  • 21. Piironen V., Syvaoja E-L., Varo P., Salminen K., Koivistoinen P., Tocopherols and tocotrienols in cereal products from Finland. Cereal Chem., 1986, 63, 78–81.
  • 22. Qureshi A.A., Sami S.A., Salser W.A., Khan F.A., Dose-dependent suppression of serum cholesterol by tocotrienol-rich fraction (TRF25) of rice bran in hypercholesterolemic humans. Atherosclersis, 2002, 161, 199–207.
  • 23. Ryynanen M., Lampi A.-M., Salo-Vaananen P., Ollilainen V., Piironen V., A small-scale sample preparation method with HPLC analysis for determination of tocopherols and tocotrienols in cereals. J. Food Comp. Anal., 2004, 17, 749–765.
  • 24. Schaffer S., Muller W.E., Eckert G.P., Tocotrienols: constitutional effects in aging and disease. J. Nutr., 2005, 135, 151–154.
  • 25. Sen C.K., Khanna S., Roy S., Tocotrienols: Vitamin E beyond tocopherols. Life Sci., 2006, 78, 2088–2098.
  • 26. Serbinova E., Kagan V., Han D., Packer L., Free radical recycling and intramembrane mobility in the antioxidant properties of a- tocopherol and a-tocotrienol. Free Radic. Biol. Med., 1991, 10, 263–275.
  • 27. Serbinova E.A., Tsuchiya M., Goth S., Kagan V.E., Packer L., Antioxidant action of a-tocopherol and a-tocotrienol in membranes. 1993, in: Vitamin E in Health and Disease (eds. L. Packer, J. Fuchs). Marcel Dekker Inc., New York, pp. 235–243.
  • 28. Slavin J.L., Mechanisms for the impact of whole grain foods on cancer risk. J. Am. Coll. Nutr. 2000, 19, 300–307.
  • 29. Suzuki Y.J., Tsuchiya M., Wasall S.R., Structural and dynamic membrane properties of a-tocopherol and a-tocotrienol: Implication to the molecular mechanism of their antioxidant potency. Biochemistry, 1993, 32, 10692–10699.
  • 30. Theriault A., Chao JT., Wang Q., Gapor A., Adeli K., Tocotrienols: a review of its therapeutic potential. Clin. Biochem., 1999, 32, 309–319.
  • 31. Wilson T.A., Idreis H.M., Taylor Ch.M., Nicolosi R.J., Whole fat rice bran reduces the development of early aortic atherosclerosis in hypercholesterolemic hamsters compared with wheat bran. Nutr. Res., 2002, 22, 1319–1332.
  • 32. Zieliński H., Ciska E., Kozłowska H., The cereal grains: focus on vitamin E. Czech J. Food Sci., 2001, 19, 182–188.
  • 33. Zieliński H., Kozłowska H., Lewczuk B., Bioactive compounds in the cereal grains before and after hydrothermal processing. Inn. Food Sci. Emerg. Technol., 2001, 2/3, 159–169.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-9edfd80d-2d35-4f3c-828f-43a5bcb97d3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.