PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2010 | 55 | 2 |

Tytuł artykułu

Landscape pattern and genetic structure of a yellow-necked mouse Apodemus flavicollis population in north-eastern Poland

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Reduced connectivity among local populations inhabiting a spatially heterogeneous landscape may restrict gene flow and thus contribute to diminished genetic variation within a population. The aim of this study was to determine the role of geographic distance and habitat barriers in developing genetic structure of a yellow-necked mouse Apodemus flavicollis (Melchior, 1834) population, taking into consideration the spatial organization of the landscape. A field study was carried out in two plots located in NE Poland that differed considerably in terms of the scale of habitat fragmentation: (1) a continuous forest complex, and (2) a mosaic of smaller forest habitats. The plots were separated by a water barrier comprised of a chain of lakes. DNA samples from a total of 654 individuals were examined by microsatellite analysis (5 loci). The results showed that the yellow-necked mouse population was characterized by a poorly pronounced genetic structure throughout the study area, although the statistical significance of F ST for most location pairs indicated that gene flow in the area was not free. The division of the mouse population into three genetically distinct groups clearly demonstrated the significant role of water bodies as a natural barrier effectively hindering free movement of animals and thus gene flow. Analysis of the genetic structure of the mouse population throughout the study area and also within the distinguished groups indicated that the entire study population may be considered as a single metapopulation. Our results suggest that geographic distance alone is not the predominant factor affecting the genetic structure of population, but in the mosaic landscape the relative isolation of individual forest fragments, and barriers hindering movements of individuals and limiting gene flow among local populations played a much more important role.

Wydawca

-

Czasopismo

Rocznik

Tom

55

Numer

2

Opis fizyczny

p.109-121,fig.,ref.

Twórcy

autor
  • University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
autor

Bibliografia

  • Aars J., Ims R. A., Liu H. P., Mulvey M. and Smith M. H. 1998. Bank voles in linear habitats show restricted gene flow as revealed by mitochondrial DNA (mtDNA). Molecular Ecology 7: 1383–1389. doi: 10.1046/j.1365-294x. 1998.00487.x
  • Arens P., van der Sluis T., van’t Westende W. P. C., Vosman B., Vos C. C. and Smulders M. J. M. 2007. Genetic population differentiation and connectivity among fragmented Moor frog (Rana arvalis) populations in The Netherlands. Landscape Ecology 22: 1489–1500. doi: 10.1007/s10980-007-9132-4
  • Bauchau V. and Le Boulengé E. 1991. Population biology of woodland rodents in a patchy landscape. [In: Le Rongeur et l’Espace. M. le Berre and L. le Gelte, eds.]. Chabaud, Paris: 275–283.
  • Bąkowski C. and Kozakiewicz M. 1988. Effect of forest road on bank vole and yellow-necked mouse populations. Acta Theriologica 33: 345–353.
  • Boorman S. A. and Levitt P. R. 1973. Group selection on the boundary of a stable population. Theory of Population Biology 4: 85–128. doi: 10.1016/0040-5809(73)90007-5
  • Borkowska A. 1999. Genetic and morphological variation among populations of the bank vole Clethrionomys glareolus from north-eastern Poland: the seasonal aspect. Zeitschrift für Säugetierkunde — International Journal of Mammalian Biology 645: 285–297.
  • Britton-Davidian J., Vahdati M., Benmehdi F., Gros O., Nance V., Crostet H., Guerassimov S. and Triantaphyllidis C. 1991. Genetic differentiation in four species of Apodemus from Southern Europe: A. sylvaticus, A. flavicollis, A. agrarius, A. mystacinus (Muridae, Rodentia). Zeitschrift für Säugetierkunde 56: 25–33.
  • Broquet T., Johnson C. A., Petit E., Thompson I., Burel F. and Fryxell J. M. 2006a. Dispersal and genetic structure in the American marten (Martes americana). Molecular Ecology 15: 1687–1689. doi: 10.1111/j.1365-294X. 2006.02878.x
  • Broquet T., Ray N., Petit E., Fryxell J. M. and Burel F. 2006b. Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecology 21: 877–889. doi: 10.1007/s10980-005-5956-y
  • Coulon A., Cosson J. F., Angibault M., Cargnelutti B., Galan M., Morellet N., Petit E., Aulagnier S. and Hewison J. M. 2004. Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Molecular Ecology 13: 2841–2850. doi: 10.1111/j.1365-294X.2004.02253.x
  • Filippucci M. G., Machlonán M. and Michaux J. R. 2002. Genetic variation and evolution in the genus Apodemus (Muridae: Rodentia). Biological Journal of Linnean Society 75: 395–419. doi: 10.1111/j.1095-8312.2002.tb02080.x
  • Frisman L. V., Kartavtseva I. V., Pavlenko M. V., Kostenko V. A., Suzuki H., Iwasa M., Nakata K. and Chernyavskii F. B. 2002. Gene-geographic variation and genetic differentiation in red-backed voles of the genus Clethrionomys (Rodentia, Cricetidae) from the region of the Sea of Okhotsk. Russian Journal of Genetics 38: 538–542. doi: 10.1023/A:1015595315205
  • Funk W. C., Blouin M. S., Corn P. S., Maxell B. A., Pilliod D. S., Amish S. and Allendorf F. W. 2005. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Molecular Ecology 14: 483–496. doi: 10.1111/j.1365-294X.2005.02426.x
  • Gębczyñski M. and Ratkiewicz M. 1998. Does biotope diversity promote an increase of genetic variation in the bank vole population? Acta Theriologica 43: 163–173.
  • Gerlach G. and Musolf K. 2000. Fragmentation of landscape as a cause for genetic subdivision in bank voles. Conservation Biology 14: 1066–1074. doi: 10.1046/j.1523-1739. 2000.98519.x
  • Gockel J., Harr B., Schlötterer C., Arnold W., Gerlach G. and Tautz D. 1997. Isolation and characterization of microsatellite loci from Apodemus flavicollis (Rodentia, Muridae) and Myodes glareolus (Rodentia, Cricetidae). Molecular Ecology 6: 597–599.
  • Goosem M. 2000. Effects of tropical rainforest roads on small mammals: edge changes in community composition. Wildlife Research 27: 151–163. doi: 10.1071/WR01058 or]Goudet J. 2001. FSTAT V2.9.3.2, a program to estimate and test gene diversities and fixation indices. http://​www2.​ unil.ch/popgen/softwares/fstat.htm
  • Gryczyńska-Siemiątkowska A., Gortat T., Kozakiewicz A., Rutkowski R., Pomorski J. and Kozakiewicz M. 2008. Multiple paternity in a wild population of the yellownecked mouse (Apodemus flavicollis). Acta Theriologica 53: 251–258.
  • Hirota T., Hirohata T., Mashima H., Satoh T. and Obara Y. 2004. Population structure of the large Japanese field mouse, Apodemus speciosus (Rodentia: Muridae), in suburban landscape, based on mitochondrial D-loop sequences. Molecular Ecology 13: 3275–3282. doi: 10.1111/ j.1365-294X.2004.02324.x
  • Hitchings S. P. and Beebee T. J. 1997. Genetic substructuring as a result of barriers to gene flow in urban Rana temporaria (common frog) populations: implications for biodiversity conservation. Heredity 79: 117–127. doi: 10.1038/hdy.1997.134
  • Höglund J., Alatalo R. V., Lundberg A., Rintamaki P. T. and Lindell J. 1999. Microsatellite markers reveal the potential for kin selection on black grouse legs. Proceedings of the Royal Society of London, Series B, Biological Sciences 266: 8134–816.
  • Ishibashi Y., Saitoh T., Abe S. and Yoshida M. C. 1997. Sex-related spatial kin structure in a spring population of grey-sided voles (Clethrionomys rufocanus) as revealed by mitochondrial and microsatellite DNA analyses. Molecular Ecology 6: 63–71. doi: 10.1046/j.1365294X.1997.00152.x
  • Ishibashi Y., Saitoh T. and Kawata M. 1998. Social organization of the vole Clethrionomys rufocanus and its demographic and genetic consequences: a review. Researches on Population Ecology 40: 39–50.
  • Iwasa M. A. and Suzuki H. 2002. Evolutionary networks of maternal and paternal gene lineages in voles (Eothenomys) endemnic to Japan. Journal of Mammalogy 83: 852–865.
  • Koskinen M. T., Hirvonen H., Landry P.-A. and Primmer C. R. 2004. The benefits of increasing the number of microsatellites utilized in genetic population studies: an empirical perspective. Hereditas 141: 61–67. doi: 10.1111/ j.1601-5223.2004.01804.x
  • Kozakiewicz M. 1993. Habitat isolation and ecological barriers — the effect on small mammal populations and communities. Acta Theriologica 38: 1–30.
  • Kozakiewicz M., Gortat T., Kozakiewicz A. and Barkowska M. 1999. Effects of habitat fragmentation on four rodent species in a Polish farm landscape. Landscape Ecology 14: 391–400.
  • Kozakiewicz M., Gortat T., Panagiotopoulou H., Gryczyńska-Siemiątkowska A., Rutkowski R., Kozakiewicz A. and Abramowicz A. 2009. Genetic spatial structure of bank vole (Myodes glareolus) and yellow-necked mouse (Apodemus flavicollis): the roles of distance and habitat barriers. Animal Biology 59: 169–187. doi: 10.1163/ 157075609X437691
  • Makova K. D., Patton J. C., Krysanov E. Y. U., Chesser R. K. and Baker R. J. 1998. Microsatellite markers in wood mouse and striped field mouse (genus Apodemus). Molecular Ecology 7: 247–249. doi: 10.1111/j.1365-294X. 1998.00315.x
  • Manel S., Schwarz M. K., Luikart G. and Taberlet P. 2003. Landscape genetics: combining landscape ecology and population genetics. TREE 18: 189–197. doi: 10.1016/ S0169-5347%2803%2900008-9
  • Marsh A. C. W., Poulton S. and Harris S. 2001. The yellow-necked mouse Apodemus flavicollis in Britain: status and analysis of factors affecting distribution. Mammal Review 31: 203–227. doi: 10.1111/j.1365-2907.2001.00089.x
  • McRae B. H. 2006. Isolation by resistance. Evolution 60: 1551–1561.
  • Merriam G., Kozakiewicz M., Tsuchiya E. and Hawley K. 1989. Barriers as boundaries for metapopulations and demes of Peromyscus leucopus in farm landscapes. Landscape Ecology 2: 227–235. doi: 10.1007/BF00125093
  • Michaux J. R., Kinet S., Filippucci M. G., Libois R., Besnard A. and Catzeflis F. 2001. Molecular identification of three sympatric species of wood mice (Apodemus sylvaticus, A. flavicollis, A. alpicola) in western Europe (Muridae: Rodentia). Molecular Ecology Notes 1: 260–263. doi: 10.1046/j.1471-8278.2001.00100.x
  • Miller M. P., Bellinger R., Forsman E. D. and Haig S. M. 2006. Effects of historical climate change, habitat connectivity, and variance of genetic structure and diversity across the range of the red tree vole (Phenacomys longicaudus) in the Pacific Northwestern United States. Molecular Ecology 15: 145–159. doi: 10.1111/j.1365-294X. 2005.02765.x
  • Montgomery W. I. 1985. Interspecific competition and the comparative ecology of two congeneric species of mice. [In: Case studies in population biology. L. M. Cook, ed]. Manchester University Press, Manchester, UK: 126–187.
  • Myers J. H. 1974. Genetic and social structure of feral house mouse populations on Grizzly Island, California. Ecology 55: 747–759. doi: 10.2307/1934411
  • Nei M. and Roychoudhury A. K. 1974. Sampling variances of heterozygosity and genetic distance. Genetics 76: 379–390. http://​www.​ncbi.​nlm.​nih.​gov/​pmc/​articles/​PMC 1213072/pdf/379.pdf
  • Ogden R., Shuttleworth C., McEwing R. and Cesarini S. 2005. Genetic management of the red squirrel, Sciurus vulgaris: a practical approach to regional conservation. Conservation Genetics 6: 511–525. doi: 10.1007/s10592-005-9006-8
  • Ohnishi N., Ishibashi Y., Saitoh T., Abe S. and Yoshida M. C. 1998. Polymorphic microsatellite DNA markers in the Japanese wood mouse Apodemus argenteus. Molecular Ecology 7: 1431–1432. doi: 10.1111/j.1365-294X. 1998.00445.x
  • Ohnishi N., Saitoh T. and Ishibashi Y. 2000. Spatial genetic relationship in population of the Japanese wood mouse (Apodemus argenteus). Ecological Research 15: 285–292.
  • Peakall R. and Smouse P. E. 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295. doi: 10.1111/j.1471-8286.2005.01155.x
  • Petit R. J., el Mousadik A. and Pons O. 1998. Identifying populations for conservation on the basis of genetic markers. Conservation Biology 12: 844–855. doi: 10.1046/ j.1523-1739.1998.96489.x
  • Pritchard J. K., Stephens M. and Donnelly P. 2000. Inferences of population structure using multilocus genotype data. Genetics 155: 945–959. http://​www.​ncbi.​nlm.​nih.​ gov/pmc/articles/PMC1461096/pdf/10835412.pdf
  • Pucek Z., Jędrzejewski W., Jędrzejewska B. and Pucek M. 1993. Rodent population dynamics in a primeval deciduous forest (Białowieża National Park) in relation to weather, seed crop and predation. Acta Theriologica 38: 199–232.
  • Ratkiewicz M. and Borkowska A. 2006. Genetic structure is influenced by environmental barriers: empirical evidence from the common vole Microtus arvalis populations. Acta Theriologica 51: 337–344.
  • Raymond M. and Rousset F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249.
  • Redeker S. Andersen L. W., Pertoldi C., Madsen A. B., Jensen T. S. and Jørgensen J. M. 2006. Genetic structure, habitat fragmentation and bottlenecks in Danish bank voles (Clethrionomys glareolus). Mammalian Biology 71: 144–158. doi: 10.1016/j.mambio.2005.12.003
  • Richard M. and Thorpe R. S. 2001. Can microsatellites be used to infer phylogenies? Evidence from population affinities of the Western Canary Island Lizard (Gallotia galloti). Molecular Phylogenetics and Evolution 20: 351–360. doi: 10.1006/mpev.2001.0981
  • Rico A., Kindlmann P. and Sedláček F. 2007. Road crossing in bank voles and yellow-necked mice. Acta Theriologica 51: 85–94.
  • Rico A., Kindlmann P. and Sedláček F. 2009. Can the barrier effect of highways cause genetic subdivision in small mammals? Acta Theriologica 54: 297–310.
  • Saccheri I., Kuussari M., Kankare M., Vikman P., Fortelius W. and Hanski I. 1998. Inbreeding and extinction in a butterfly metapopulation. Nature 392: 491–493. doi: 10. 1038/33136
  • Saunders D. A., Hobbs R. J. and Margules C. R. 1991. Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5: 18–32. doi: 10.1111/j. 1523-1739.1991.tb00384.x
  • Schmid-Holmes S. and Drickamer L. C. 2001. Impact of forest patch characteristics on small mammal communities: a multivariate approach. Biological Conservation 99: 293–305. doi: 10.1016/S0006-3207(00)00195-6
  • Schneider S., Roessli D. and Excoffier L. 2000. ARLEQUIN: a software for population genetic data analysis, ver. 2.000. University of Geneva, Geneva, Switzerland. Slatkin M. 1993. Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47: 264–279. doi: 10.2307/2410134
  • Stacy J. E., Jorde P. E., Steen H., Ims R. A., Purvis A. and Jacobsen K. S. 1997. Lack of concordance between mtDNA gene flow and population density fluctuation in the bank vole. Molecular Ecology 7: 247–254. doi: 10.1046/ j.1365-294X.1997.d01-470.x
  • Suzuki H., Sato J. J., Tsuchiya K., Luo J., Zhang Y. P., Wang Y. X. and Jiang X. L. 2003. Molecular phylogeny of wood mice (Apodemus, Muridae) in East Asia. Biological Journal of Linnean Society 80: 469–481. doi: 10. 1046/j.1095-8312.2003.00253.x
  • Szacki J. 1999. Spatially structured populations: how much do they match the classic metapopulation concept? Landscape Ecology 14: 369–379. doi: 10.1023/A:10080 58208370
  • Tegelström H. and Hansson L. 1987. Evidence of long distance dispersal in the common shrew (Sorex araneus). Zeitschrift für Säugetierkunde 52: 52–54.
  • Tegelström H. and Jaarola M. 1998. Geographic localization of a concact zone between bank voles (Clethrionomys glareolus) with distinctly different mitochondrial DNA. Acta Theriologica 43: 175–183.
  • Trizio I., Crestanello B., Galbusera P., Wauters L. A., Tosi G., Matthysen E. and Hauffe H. C. 2005. Geographical distance and physical barriers shape the genetic structure of Eurasian red squirrels (Sciurus vulgaris) in the Italian Alps. Molecular Ecology 2: 469–481. doi: 10.1111/j. 1365-294X.2005.02428.x
  • Vignieri S. N. 2005. Streams over mountains: influence of riparian connectivity on gene flow in the Pacific jumping mouse (Zapus trinotatus). Molecular Ecology 14: 1925–1937. doi: 10.1111/j.1365-294X.2005.02568.x
  • Wang Y. H., Yang K. C., Bridgman C. L. and Lin L. K. 2008. Habitat suitability modelling to correlate gene flow with landscape connectivity. Landscape Ecology 23: 989–1000.
  • Weir B. S. and Cockerham C. C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370. doi: 10.2307/2408641
  • White T. A. and Searle J. B. 2007. Genetic diversity and population size: island populations of the common shrew, Sorex araneus. Molecular Ecology 16: 2005–2016. doi: 10.1111/j.1365-294X.2007.03296.x

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-9c55d56f-02c1-40b8-9daa-c38aaef9335a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.