PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 13 | 3 |

Tytuł artykułu

Liver catalase, glutathione peroxidase and reductase activity, reduced glutathione and hydrogen peroxide levels in acute intoxication with chlorfenvinphos, an organophosphate insecticide

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this study was to determine the effect of acute intoxication with chlorfenvinphos on the liver reduced glutathione (GSH) level and the activities of two enzymes involved in glutathione metabolism, as well as the activity of catalase (CAT), glucose-6-phosphate dehydrogenase (G6PDH) and the level of liver hydrogen peroxide. The concentration of malondialdehyde (MDA) was determined as lipid peroxidation index. Rats were divided into two groups: the control group, which received oil intragastrically by stomach tube, and the experimental groups, which received oil solution of chlorfenvinphos (CVP) in doses of 0.02 LD50, 0.1 LD50 or 0.5 LD50. After 1, 24, 48 hours of intoxication with chlorfenvinphos, the livers were quickly removed and placed in iced 0.9% NaCl containing 0.16 mg/ml heparin. The liver glutathione peroxidase (GPx) and reductase (GR) activities as well as GSH and hydrogen peroxide levels were determined using Bioxytech Assay kits. CAT activity was determined by Aebi method, G6PDH activity was measured using Sigma Assay kit. MDA level was determined by Buege and Aust method. The changes of examined parameters of antioxidative system as well as lipid peroxidation index were found. The correlation between MDA concentration and the elements of enzymatic and non-enzymatic antioxidative system was determined. A statistically significant correlation was found only between MDA level and G6PDH activity. In conclusion, it is suggested that G6PDH play a key role in the defence against oxidative stress induced by intoxication with chlorfenvinphos.

Wydawca

-

Rocznik

Tom

13

Numer

3

Opis fizyczny

p.303-309,ref.

Twórcy

  • Medical Academy, Mickiewicza 2c, 15-222 Bialystok, Poland

Bibliografia

  • 1. ŁUKASZEWICZ-HUSSAIN A., MONIUSZKO-JAKONIUK J.: Activity of lysosomal enzymes in acute intoxication with organophosphorus insecticides. Pol. J. Environm. Stud. 6, 51, 1997
  • 2. ŁUKASZEWICZ-HUSSAIN A., MONIUSZKO-JAKONIUK J., GAŁAŻYN-SIDORCZUK M.: Zmiany aktywności aminotransferaz w surowicy krwi i frakcjach homogenatu w zatruciu chlorfenwinfosem. Bromatol. Chem. Toksykol. 3, 279, 1996
  • 3. ŁUKASZEWICZ-HUSSAIN A., MONIUSZKO-JAKONIUK J.: Procesy glikolityczne w wątrobie szczurów w zatruciu chlorfenwinfosem. Med. Pracy, 48, 579, 1997
  • 4. HOLMUHAMEDOV E.L., KHOLMOUKHAMEDOVA G.L., BAIMURADOV T.B.: Non-cholinergic toxicity of organophosphates in mammals: Interaction of ethaphos with mitochondrial functions. J. Appl. Toxicol. 16, 475, 1996
  • 5. LODOVICI M., CASALINI C., BRIANI C., DOLARA P.: Oxidative damage in rats treated with pesticide mixtures. Toxicol. 16, 475, 1997
  • 6. AEBI H.E.: Catalase in vitro. Methods of Enzymol. 105, 121, 1984
  • 7. LOWRY O.H., ROSENBROUGH M.J., FARR A.L., RANDALL R.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 263, 1951
  • 8. BUEGE J.A., AUST S.: Microsomal lipid peroxidation. Methods of Enzymol. 51, 302, 1978
  • 9. De HAAN J.B., BLADIER C., GRIFFITHS P., KELMER M., O’SHEA R.D., CHEUNG N.S., BRONSON R.T., SILVESTRO M.J., WILD S., ZHENG S.S., BEART P.M., HERTZOG P.J., KOLA I.: Mice with homozygous null mutation for the most abundant glutathione peroxidase, GPX1, show increased sussceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J. Biol. Chem. 273, 22528, 1998
  • 10. FU Y., CHENG W.H., ROSS D.A., LEI X.G.: Cellular glutathione peroxidase protects mice against lethal oxidative stress induced by various doses of diquat. P.S.E.B.M. 222, 164, 1999
  • 11. TANIGUCHI M., YASUTAKE A., TAKEDOMI K., INOUE K.: Effects of N-nitrosodimethylamine (NDMA) on the oxidative status of rat liver. Arch. Toxicol. 73, 141, 1999
  • 12. SPOLARICS Z., WU J.X.: Role of glutathione and catalase in H2O2 detoxification in LPS-activated hepatic endothelial and Kupffer cells. Gastroint. Liver Physiol. 273, G1304, 1997
  • 13. LLEDIAS F., RANGEL P., HANSBERG W.: Oxidation of catalase by singlet oxygen. J. Biol. Chem. 273, 10630, 1998
  • 14. De BLESER P.J., XU G., ROMBOUST K., ROGIERS V., GEERTS A.: Glutathione levels discriminate between oxidative stress and transforming growth factor-β signaling in activated rat hepatic stellate cells. J. Biol. Chem. 274, 33881, 1999
  • 15. MERAD-SAIDOUNE M., BOITIER E., MARSAC A.N., MARTNOU J.C., SOLA B., SINET P.M., CEBALLOS-PICOT I.: Overproduction of Cu/Zn-superoxide dismutase or Bcl-2 prevents the brain mitochondrial respiratory dysfunction induced glutathione depletion. Exp. Neurol. 158, 428, 1999
  • 16. TOUSSAINT O., HOUBION A., REMACLE J.: Relationship between the critical level of oxidative stresses and the glutathione peroxidase activity. Toxicol. 316, 89, 1993
  • 17. ŁUKASZEWICZ-HUSSAIN A.: Organophosphate insecticide chlorfenvinphos affects superoxide dimutase, catalase and malondialdehyde in rat liver. Pol. J. Environm. Stud. 10, 279, 2001
  • 18. LASZLO A., MATKOVICS B., VARGE SZ.I., WITTMAN T., FAZEKAS T.: Changes in lipid peroxidation and antioxidant enzyme activity of human red blood cells after myocardial infarction. Clin. Chim. Acta 203, 413, 1991
  • 19. HUANG Y.S., SULTATOS L.G.: Glutathionedependent biotransformation of methyl parathion by mouse in vitro. Toxicol. Lett. 68, 275, 1993
  • 20. PARKE D.V.: Nutritional requirements for detoxication of environmental chemicals. Food Add. Contam. 8, 381, 1991
  • 21. MALMEZAT T., BREUILLE D., CAPITAN P., MIRAND P.P., OBLED C.: Glutathione turnover is increased during the acute phase of sepsis in rats. J. Nutr. 130, 1239, 2000
  • 22. EATON D.L., HAMEL D. M.: Increase in γ-glutamylcysteine synthetase activity as a mechanism for butylated hydroxyanisole-mediated elevation of hepatic glutathione. Toxicol. Appl. Pharmacol. 126, 145, 1994
  • 23. KLEE S., NURNBERGER M.C., UNGEMACH F.R.: The consequences of nitrofurantoin-induced oxidative stress in isolated rat hepatocytes: evaluation of pathobiochemical alterations. Chem. Biol. Interact. 93, 91, 1994
  • 24. ZHANG Z., APSE K., PANG J., STANTON R.C.: High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J. Biol. Chem. 275, 40042, 2000
  • 25. SAVOLAINEN K.: Understanding the toxic action of organophosphates. Handbook of pesticide toxicology. II wyd. Academic Press USA, 1013-1043, 2001
  • 26. KAPLOVITZ N., TSUKAMOTO H.: Oxidative stress and liver disease. Prog. Liver Diseases 14, 131, 1996
  • 27. FLOHE L.: Glutathione peroxidase. Basic Life Sci. 49, 663, 1988
  • 28. BURK R.F.: Protection against free radical injury by selenoenzymes. Pharmacol. Ther. 45, 383, 1990
  • 29. SALVEMINI F., FRANZE A., IERVOLINO A., FILOSA S., SALZANO S., URSINI M.V.: Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression. J. Biol. Chem. 274, 2750, 1999
  • 30. SLEKAR K.H., KOSMAN D.J., CIZEWSKI CULOTTA V.: The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J. Biol. Chem. 271, 28831, 1996
  • 31. YANG Z.P., MORROW J., WU A., ROBERTS L.J.II, DETTBARN W.D.: Diisopropylphosphorofluoridate-induced muscle hyperactivity associated with enhanced lipid peroxidation in vivo. Biochem. Pharmacol. 52, 357, 1996
  • 32. POOVALA V.S., KANJI V.K., TACHIKAWA H, SALAHUNDEEN A.K.: Role of oxidant stress and antioxidant protection in acephate-induced renal tubular cytotoxicity. Toxicol. Sci. 46, 403, 1998
  • 33. POOVALA V.S., HUANG H., SALAHUDEEN A.K.: Role of oxygen metabolites in organophosphate-bidrin-induced renal tubular cytotoxicity. J. Am. Soc. Neph. 10, 1746, 1999

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-94bb7799-5f2b-4718-8b13-e204f14423f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.