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In response to various neurohumoral substances endothelial cells release nitric oxide
(NO), prostacyclin and produce hyperpolarization of the underlying vascular smooth
_muscle \ cells, possibly by releasing another factor termed endothelium-derived
hyperpolarizing factor (EDHF). EDHF-mediated responses are sensitive to the
combination of two toxins, charybdotoxin plus apamin, but do not involve
ATP-sensitive or large conductance calcium-activated potassium channels. As
hyperpolarization of the endothelial cells is required in order to observe
endothelium-dependent hyperpolarization, and electrical coupling through
myo-endothelial gap junctions may explain the phenomenon. An alternative
explanation is that the hyperpolarization of the endothelial cells causes an efflux of
potassium that in turn activates the inwardly rectifying potassium conductance and
the Na*/K* pump of the smooth muscle celis. Endothelial cells produce metabolites
of the cytochrome P450-monooxygenase that activate BK,, and induce
hyperpolarization of coronary arterial smooth muscle cells. The elucidation of the
mechanism underlying endothelium-dependent hyperpolarization and the discovery
of specific inhibitors of the phenomenon are prerequisite for the understanding of the
physiological role of this alternative endothelial pathway involved in the control of
vascular tone in health and disease.

Key words: cytochrome P450 monooxygenase, endothelium, gap junction, hyperpolarization,
potassium channels, smooth muscle.

INTRODUCTION

Endothelial cells synthesize and release vasoactive mediators in response to
various neurohumoral substances (e.g. acetylcholine, adenosine triphosphate,
bradykinin, substance P, thrombin) and physical stimuli (e.g. the shear stress
¢xerted by the flowing blood). Nitric oxide (NO) produced by the
L-arginine-NO synthase pathway and prostacyclin produced from arachidonic



526

acid by cyclooxygenase have been identified as endothelium-derived
‘vasodilators. However, some endothelium-dependent relaxations cannot be
explained by the release of either NO or/and prostacyclin. In various blood
vessels endothelium-dependent relaxations are accompanied by endothelium-
dependent hyperpolarization of the vascular smooth muscle cells. With the
discovery of specific inhibitors of the NO production, it became obvious that
endothelium-dependent relaxations and hyperpolarizations can be partially or
totally resistant to inhibitors of cyclooxygenases and NO synthases suggesting
the existence of an additional endothelial mechanism (1—5). Under these
conditions, the hyperpolarization of the smooth muscle membrane and the
following decrease in the intracellular Ca®* concentration explains the
endothelium-dependent relaxations (6—8). Indeed, hyperpolarization of smooth
muscle cells induces relaxation by reducing the open probability of
voltage-dependent calcium channels and the turnover of intracellular
phosphatidylinositol (9—10). Endothelium-dependent hyperpolarizations
and/or relaxations resistant to inhibitors of nitric oxide synthase and
cyclooxygenase are also present in various human blood vessels including
coronary arteries (11) (Fig. I).

MECHANISM OF ENDOTHELIUM-DEPENDENT HYPERPOLARIZATION

The mechanism of endothelium-dependent hyperpolarization involves the
opening of a potassium conductance. Indeed, the amplitude of the
hyperpolarization is inversely related to the extracellular concentration of K*
ions, and it disappears in K* concentrations higher than 25 mM (12—15). Non
selective inhibitors of calcium-dependent potassium channels, such as tetrae-
thylammonium or tetrabutylammonium prevent the hyperpolarization (13, 16,
17). Endothelium-dependent hyperpolarizations are associated with an increase
in rubidium efflux (18, 19) and a decrease in membrane resistance which suggzest
that the hyperpolarization is due to the opening and not to the closing of
a conductance (e.g. chloride or non-specific cationic conductances) (12, 20, 21).

In all the species studied so far, including human (22—28), endothelium-
dependent hyperpolarizations are insensitive to glibenclamide (29) (an inhibitor
of ATP-sensitive potassium channels) They are blocked by apamin (30)
(a specific inhibitor of small conductance calcium-activated potassium channel)
or by the combination of apamin plus charybdotoxin (15, 29, 31—38) (a non
specific inhibitor of large and intermediate conductance calcium-activated
potassium channels as well as some voltage-dependent potassium channels) but
not by the combination of apamin plus iberiotoxin (32, 36—39) (a specific
inhibitor of large conductance calcium-activated potassium channels: BKca)
indicating that BK ¢, are not involved in EDHF-mediated responses. The site
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Fig. 1. Endothelium-dependent hyperpolarizations (modified from reference 5)

Acetylcholine (ACh), bradykinin (BK) and substance P (SP), through the activation of their
respective receptor subtypes (M, = muscarinic, B, = bradykinin and NK, = neurokinin
receptors), and agents that increase intracellular calcium, such as the calcium ionophore A23187,
provoke endothelium-dependent hyperpolarization.

R: receptor; NOS: nitric oxide synthase; COX: cyclooxygenase; X: putative EDHF synthase; P450:
cytochrome P450 monooxygenase; CaM: calmodulin; NO: nitric oxide; PGI,: prostacyclin; EDHF:
endothelium-derived hyperpolarizing factor: 5,6 EET: 5,6-epoxy-eicosatrienoic acid; 11,12 EET:
11,12-epoxy-eicosatrienoic  acid; 14,15 . EET: 14,15-epoxy-eicosatrienoic  acid; NAPE:
N-acylphosphatidylethanolamine; GC: guanylate cyclase, c¢GMP: cyclic guanosine
monophosphate; CAMP: cyclic adenosine monophosphate; ATP: adenosine trisphosphate; IP,:
inositol trisphosphate; Hyperpol.: hyperpolarization.

SR 141716 is an antagonist of the cannabinoid CB1 receptor subtype (CB1). Glibenclamide (Glib)
is a selective inhibitor of ATP sensitive potassium channels (K atp)» Tetraethyl ammonium (TEA)
and tetrabutyl ammonium (TBA) are non specific inhibitors of potassium channels when used at
high concentrations (>5 mM) while at lower concentrations (1—3 mM) these drugs are selective
for calcium-activated potassium channels (K'c,:+)- Iberiotoxin (IBX) is a specific inhibitor of large
conductance K¢, ,+. Charybdotoxin (CTX) is a non selective inhibitor of large conductance K4
intcrmediate conductance Ko+ (IKG,:+) and some voltage-dependent potassium channels,
Apamin is a specific inhibitor of small conductance Kea+ (SK{,.+). Barium (Ba2*) in the
micromolar range, is a specific inhibitor of inward rectifyer potassium channel (K;). Gap27, an
cleven amino acid peptide possessing conserved sequence homology to a portion of the second
extracellular loop of connexin, 18B-glycyrrhetinic acid (xGA) and heptanol are gap junction

uncouplers.
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of action of the two toxins (apamin and charybdotoxin) is more likely to be the
endothelial cells (inhibition of endothelial hyperpolarization) than the smooth
muscle cells [inhibition of the action of endothelium-derived hyperpolarizing
factor (EDHF)]. Indeed, calcium-activated potassium channels are expressed
in endothelial cells (40). The combination of the two toxins blocks
EDHF-mediated responses if selectively applied to the endothelium (41), and
inhibits the hyperpolarization of the endothelial cells produced by
acetylcholine (42, 43). Finally, the existence of a potassium conductance
specifically sensitive to the combination of charybdotoxin plus apamin could
not be detected in isolated vascular smooth muscle cells (39, 44).

In some vascular tissue, prostacyclin and NO can also be considered as
endothelium-derived hyperpolarizing factors since the two endothelial
mediators hyperpolarize the vascular smooth muscle cells. However, the
mechanisms of the hyperpolarizations produced either by prostacyclin or NO
differ from the mechanism of the endothelium-dependent hyperpolarizations
attributed to EDHF. Prostacyclin and/or its stable analogues open
ATP-sensitive potassium channels blocked by sulfonylureas such as gliben-
clamide (29, 30, 45—48) and in some instance BK. (49—52), or
4-aminopyridine-sensitive delayed rectifier potassium channel (53). Similarly,
NO and/or NO donors can open ATP-sensitive potassium channels (29, 31,
47, 54—58) and BK, (58—69). In some tissue NO can activates both BK,
and delayed rectifier voltage-dependent potassium channels (53). In most
of the tissues, the activation of BK. by NO is dependent upon
cyclic-GMP-dependent protein kinase. However, NO can also produce
a direct, cyclic-GMP-independent activation of BK ., (62, 67, 70, 71).

NATURE OF EDHF

Endothelium-dependent hyperpolarization could involve electrical coupling
through myo-endothelial junctions (72). Indeed, substances which produce
endothelium-dependent hyperpolarization of vascular smooth muscle cells, also
hyperpolarize endothelial cells, with the same time course (73). Gap junctions
couple smooth muscle and endothelial cells, and conduction of depolarization
and hyperpolarization from smooth muscle cells to endothelial cells has been
demonstrated (74, 75) as well as conduction of hyperpolarization from
endothelial to smooth muscle cells (76, 77). Specific blockers of gap junctions,
18B-glycyrrhetinic acid and Gap27, a peptide which possesses a conserved
sequence homology with a portion of connexin, inhibit EDHF-like responses in
rabbit and guinea-pig arteries (72, 76—78). However, the respective role of
myo-endothelial and of myo-myo gap junction coupling has to be established

to better understand the potential contribution of gap junction in EDHF
responses.
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An alternative explanation is that the hyperpolarization of the endothelial
cells causes an efflux of potassium from the intracellular space that could lead to
the accumulation of potassium ions in the intercellular space between endothelial
and smooth muscle cells. A moderate increase in potassium concentration can
provoke the hyperpolarization of vascular smooth muscle cells by activating the
inwardly rectifying potassium conductance (79) and the Na*/K* pump (80).
Therefore, potassium ions could be EDHF. This hypothesis has been successfully
demonstrated in the hepatic and mesenteric arteries of the rat (42) but does not
seem to be verified in other blood vessels from other species (15).

The existence of a diffusable substance has been demonstrated under
bioassay conditions in which the source of EDHF was either native vascular
segments or cultured endothelial cells (81—83). EDHF could be a short-lived
metabolite of arachidonic acid produced through the cytochrome P450
monooxygenase pathway (84). Experiments performed mainly in bovine and
porcine coronary arteries show that EDHF-responses are inhibited by
inhibitors of cytochrome P450 monooxygenases and are associated with the
release from endothelial cells of epoxyeicosatrienoic acid, substances that
produce hyperpolarization of vascular smooth muscle (85, 86). However,
inhibitors of cytochrome P450, studied at high concentration, are notoriously
unspecific. In other blood vessels of the pig as well as in various arteries from
humans, chemically unrelated inhibitors of cytochrome P450 do not produce
an inhibition of EDHF-mediated responses (14, 24, 87, 88). F inally, activation
of cytochrome P450 in endothelial cells may be a more general requirement for
increasing the intracellular calcium concentration and thus the release of
endothelium derived factors such as NO and EDHF (89) or producing
endothelial hyperpolarization by allowing the opening of calcium-activated
potassium channels. |

Theoretically, adenosine, anandamide, the endogenous ligand for the
cannabinoid CB; receptor as well as short-lived molecules such as carbon
monoxide, hydroxyl radicals and hydrogen peroxide could all be putative
endothelial-derived hyperpolarizing factors as they are produced by the
endothelial cells and induce hyperpolarization of the smooth muscle cells, but the

role of these molecules as EDHF has not been demonstrated convincingly
(5, 11, 90, 91).

CONCLUSION

The elucidation of the mechanism underlying endothelium-dependent
hyperpolarizations and the discovery of specific inhibitors of the phenomenon
are prerequisite for the understanding of the physiological role of this
alternative endothelial pathway involved in the control of vascular tone in
health and disease.
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