PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 08 | 1 |

Tytuł artykułu

The nonallosteric mechanism of enzyme activity regulation. Is it the only true mechanism

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The nonallosteric regulation mechanism of enzyme reaction velocity assumes that the substrate and enzyme interact via a metal cation and form simple and mixed, mono- and multi-nuclear complexes. A solution of equations for individual cases gives a function of initial reaction velocity at any given substrate or modifier concentration. This function can describe kinetic effects that are considered allosteric, as well as phenomena omitted by commonly-accepted models.

Wydawca

-

Rocznik

Tom

08

Numer

1

Opis fizyczny

p.85-95,fig.

Twórcy

autor
  • University of Opole, Kominka 4, 45-035 Opole, Poland

Bibliografia

  • 1.Peitgen, H.-O., Jürgens, H. and Saupe D. Fractals for the Classroom. Part 1. Chapter 1. Springer-Verlag, New York (1992) 37-97.
  • 2.London, W.P. and Steck, T.L. Kinetics of enzyme reactions with interaction between a substrate and a (metal) modifier. Biochemistry 8 (1969) 1767-1779.
  • 3.Monod, J., Wyman, J. and Changeux, P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12 (1965) 88-118.
  • 4.Koshland, D.E., Nemethy, Jr. and Filmer, D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5 (1966) 365-385.
  • 5.Baranowska, B., Terlecki, G. and Baranowski, T. The influence of inorganic phosphate and ATP on the kinetics of bovine heart muscle pyruvate kinase. Mol. Cell. Biochem. 64 (1984) 45-50.
  • 6.Baranowska, B. and Baranowski, T. Heart pyruvate kinase catalyses the synthesis of ATP from ADP and inorganic pyrophosphate. Bull. Ac. Pol. Biol. 35 (1987) 1-5.
  • 7.Baranowska, B. and Baranowski, T. Kinetic properties of human muscle pyruvate kinase. Mol. Cell. Biochem. 45 (1982) 117-125.
  • 8.Kuczek, M. A hypothetical model of the influence of inorganic phosphate on the kinetics of pyruvate kinase. Biosystems 54 (1999) 71-76.
  • 9.Kuczek, M. Influence of inorganic pyrophosphate on the kinetics of muscle pyruvate kinase: A simple nonallosteric feedback model. Biosystems 66 (2002) 11-20.
  • 10.Rao, G.S.J., Cook, P.F. and Harris, B.G. Kinetic characterization of a T-state of Ascaris suum phosphofructokinase with heterotropic negative cooperativity by ATP eliminated. Arch. Biochem. Biophys. 365 (1999) 335-343.
  • 11.Zhu, Z., Ling, S., Yang, Q. H. and Li, L. Involvement of the chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase sequence His444-Arg-Glu-Arg in modulation of the bisphosphatase activity by its kinase domain. Biochem. J. 357 (2001) 513-20.
  • 12.Yang, Q.H., Zhu, Z., Dong, M.Q., Ling S., Wu C.L. and Li, L. Binding of ATP to the fructose-2,6-bisphosphatase domain of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase leads to activation of its 6-phosphofructo-2-kinase. J. Biol. Chem. 276 (2001) 24608-13.
  • 13.Skalecki, K., Mularczyk, W. and Dzugaj, A. Kinetic properties of D-fructose-l,6-bisphosphate 1-phosphohydrolase isolated from human muscle. Biochem. J. 310 (1995) 1029-1035.
  • 14.Ozaki, I., Mitsui, Y., Sugiya, H. and Furuyama, S. Ribose 1,5-bisphosphate inhibits fructose-1,6-bisfosphatase in rat kidney cortex. Comp. Biochem. Phys. B. 125 (2000) 97-102.
  • 15.Willemoes M., Hove-Jensen B. and Larsen S. Steady state kinetic model for the binding of substrates and allosteric effectors to Escherichia coli phosphoribosyl-diphosphate synthase. J. Biol. Chem. 275 (2000) 35408-12.
  • 16.Vinogradov, V.V. and Strumilo, S.A. Mechanism of the activation of thiamine pyrophosphokinase from the rat liver by magnesium ions. Biochemistry (Moscow, Int Ed.) 44 (1979) 42-47.
  • 17.Lee, L.P., and Kosicki, G.W. Effect of magnesium ions on coenzyme A and pyrophosphate derivatives inhibition of yeast glucose-6-phosphate dehydrogenase. Can. J. Biochem. 45 (1967) 1279-82.
  • 18.Tsai, C.S. and Chen Q. Regulation of D-glucose-6-phosphate dehydrogenase from Schizosaccharomyces pombe. Biochem. Cell. Biol. 76 (1998) 645-8.
  • 19.Salati, L.M. and Amir-Achmady, B. Dietary regulation of expression of glucose-6-phosphate dehydrogenase. Annu. Rev. Nutr. 24 (2001) 121-40.
  • 20.Strumilo, S.A., Taranda, N.I., Senkevich, S.B. and Vinogradov, V.V. Kinetic properties of NADP-specific isocitrate dehydrogenase from bovine adenals. Biochemistry (Moscow, Int. Ed.) 52 (1987) 724-730.
  • 21.Senkevich, S.B., Strumilo, S.A. and Vinogradov V.V. NADP-dependent malate dehydrogenase from bovine adrenal cortex cytoplasm. Purification and properties. Biochemistry (Moscow, Int.Ed.) 51 (1986) 891-897.
  • 22.Strumilo, S., Czerniecki, J. and Dobrzyn, P. Regulatory effect of thiamin pyrophosphate on pig heart pyruvate dehydrogenase complex. Biochem. Biophys. Res. Commun. 256 (1999) 341-5.
  • 23.Strumilo, S. and Markiewicz, J. Thiamine pyrophosphate as an effector of 2-oxoglutarate dehydrogenase complex from European bison heart. Biochem. Mol. Biol. Int. 37 (1995) 101-106.
  • 24.Strumilo, S.A., Taranda, N.I. and Vinogradov, V.V. Role of phosphate ions and divalent metals in the regulation of activity of the α-ketoglutarate dehydrogenase complex of the adrenal cortex. Biochemistry (Moscow, Int.Ed.) 46 (1981) 156-161.
  • 25.Wales, M.E., Madison, L.L., Glaser, S.S. and Wild, J.R. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase. J. Mol. Biol. 294 (1999) 1387-1400.
  • 26.Vinogradov, V.V., Iarotskii, Iu. V. and Mandrik, K. A. Kinetic model of the functioning of pyruvate kinase from bovine adrenal cortex. Biochemistry (Moscow, int.ed.) 53 (1988) 69-75.
  • 27.Wedler, F. C., Denman, R.B. and Roby, W.G. Glutamine synthetase from ovine brain is a manganese(II) enzyme. Biochemistry 21 (1982) 6389-96.
  • 28.Ali, L.Z. and Sloan, D.L. Activation of hypoxanthine/guanine phosphoribosyltransferase from yeast by divalent zinc and nickel ions. J. Inorg. Biochem. 28 (1986) 407-15.
  • 29.Tsai, C.S., Shi, J.L. and Chen, Q. Kinetic studies of gluconate pathway enzymes from Schizosaccharomyces probe. Arch. Biochem. Biophys. 316 (1995)163-168.
  • 30.Atkins, W.M., Wang, R.W. and Lu, A.Y.H. Allosteric behaviour in cytochrome P450-dependent in vitro drug-drug interactions: A prospective based on conformational dynamics. Chem. Res. Toxicol. 14 (2001) 338- 347.
  • 31.Hübner, G. and Wolna, P. Nonlinear dynamic processes in open single enzyme systems. Biol. Chem. Hoppe-Seyler. 375 (1994) 31-34.
  • 32.Richter, P.H. and Ross J. Oscillations and efficiency in glycolysis. Biophys. Chem. 12 (1980) 285-97.
  • 33.Orlik, M. Reakcje oscylacyjne porządek i chaos. WNT Warszawa. (1996).
  • 34.Kawczynski, A.L. Reakcje chemiczne od równowagi przez struktury dyssypatywne do chaosu. WNT Warszawa. (1990).
  • 35.Scott, S.K. Chemical Chaos. Oxford University Press. P. (1994) 409-440.
  • 36.Schramm, V.L. Enzymatic transition states and transition state analog design. Annu. Rev. Biochem. 67 (1998) 693-720.
  • 37.Roussel; M.C. Slowly reverting enzyme inactivation: a mechanism for generating long-lived damped oscillations. J. Theor. Biol. 195 (1998) 233- 244.
  • 38.Kato, T., Shimotohno, K. Estimation of kinetic parameters for substrate and inhibitor in a reaction with an enzyme sample containing different types of inhibitor. Biochim. Biophys. Acta 801 (1984) 157-162.
  • 39.Plonka, A. Recent developments in dispersive kinetics. Prog. React. Kin. 25 (2000) 109-218.
  • 40.Li, H., Chen, S., Zhao H. Fractal mechanisms for the allosteric effects of proteins and enzymes. Biophys. J. 58 (1990) 1313-1320.
  • 41.Szabó, Z.G. Kinetic characterization of complex reaction systems. In Comprehensive Chemical Kinetics, (Bamford, C.H., Tipper, C.F.H. Eds.) Elsevier Publishing Company, Amsterdam, London, New York vol. 2 (1969) 74-75.
  • 42.Luchter-Wasylewska, E. Cooperative kinetics of human prostatic acid phosphatase. Biochim. Biophys. Acta 36470 (2001) 1-8.
  • 43.Savageau, M.A. Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways. Biosystems 47 (1998) 9-36.
  • 44.VanDoren, V.J. Examining the fundamentals of PID control. Control. Eng. 43 (1996) 51-52.
  • 45.Dittert, I., Vlachova, V., Knotkova, H., Vitaskova, Z., Vyklicky, L., Kress, M. Reeh, P.W. A technique for fast application of heated solutions of different composition to cultured neurones. J. Neurosci. Methods 82 (1998) 195-201.
  • 46.Messner, B. and Tilbury, D. http://www.engin.umich.edu/group/ctm/PID
  • 47. Williams, C.D.H. http://newton.ex.ac.uk/teaching/CDHW/feedback/ ControlTypes
  • 48.Suga, H., Cowan, J.A. and Szostak, J. W. Unusual metal ion catalysis in an acyl-transferase ribozyme. Biochemistry 37 (1998) 10118-10125.
  • 49.Vaidya, A. and Suga, H. Diverse roles of metal ions in acyl-transferase ribozymes. Biochemistry 40 (2001) 7200-7210.
  • 50.Exley, C. and Korchazhkina, O. Promotion of formation of amyloid fibrils by aluminium adenosine triphosphate (A1ATP). J. Inorg. Biochem. 84 (2001) 215-224.
  • 51.Exley, C. Schneider, C. and Doucet, F.J. The reaction of aluminium with silicic acid in acidic solution: An important mechanism in controlling the biological availability of aluminium? Coordin. Chem. Rev. (2002), in press.
  • 52.Guan, Z.Z., Wang, Y.N., Xiao, K.Q., Dai, D.Y., Chen, Y.H. Liu, J.L., Sindelar, P. and Dallner, G. Influence of chronic fluorosis on membrane lipids in rat brain. Neurotoxicol. Teratol. 20 (1998) 537-42.
  • 53.Graham, D.L., Lowe, P.N., Grime, G.W., Marsh, M., Rittinger, K., Smerdon, S.J., Gamblin, S.J. and Eccleston, J.F. MgF3 as a transition state analog of phosphoryl transfer. Chem. Biol. 9 (2002) 375-381.
  • 54.Smith, R.M., Martel, A.M. and Chen, Y. Critical evaluation of stability constants for nucleotide complexes with protons and metal ions and accompanying enthalpy changes. Pure Appl. Chem. 63 (1991) 1015-1080.
  • 55.Hammett, L.P. Physical Organic Chemistry. Reaction Rates, Equilibria, and Mechanisms. Chapter 5. McGraw-Hill Book Company, New York (1970).
  • 56.Kettle, S.F.A. Physical Inorganic Chemistry. A Coordinational Chemistry Approach. Oxford University Press (1996).

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-91e04196-768f-4a09-98e7-ffd6b9a3c263
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.