PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2009 | 62 |

Tytuł artykułu

A scanner-based approach to soil profile-wall mapping of root distribution

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Root distribution sampling techniques are often inaccurate, time consuming and costly. We present an inexpensive approach to soil profile-wall mapping using a desktop scanner that allowed us to spend reduced time in the field. The scanner was pressed onto the vertical surface of a 1 x 1 m soil pit and images of the roots were taken in situ. In a common garden planting of eleven, 30-year-old conifer and hardwood tree species in Poland, we compared root counts (number of roots cm–2) obtained by this method with independent measurements of root length density (RLD) obtained from soil cores. We found a positive correlation (Spearman rank correlation r=0.93; P<0.001) suggesting general agreement of the two approaches in ranking among the species. Soil coring as well as grid mapping with plastic overlays took a longer total time for quantifying root distribution than the scanning procedure. The desktop scanner approach we developed is an inexpensive, time efficient and accurate way of quantifying root distribution and abundance that allows a unique coupling of root data to soil properties.

Wydawca

-

Czasopismo

Rocznik

Tom

62

Opis fizyczny

p.35-40,fig.,ref.

Twórcy

autor
  • The Pennsylvania State University, University Park, Pennsylvania 16802, USA
autor
autor
autor

Bibliografia

  • Bland W.L. 1989. Estimating root length density by the core-break method. Soil Science Society of America Journal 53: 1595–1597.
  • Bland W.L. 1991. Root length density from core-break observations: sources of error. In: Plant Roots and their Environment. McMichael B.L., Persson, H. (eds.) Elsevier, Amsterdam, Netherlands, pp. 565–569.
  • Bragg P.L, Govi G., Cannell R.Q. 1983. A comparison of methods, including angled and vertical minirhizotrons, for studying root growth and distribution in a spring oat crop. Plant and Soil 73: 435–440.
  • Dauer J.M., Chorover J., Chadwick O.A., Oleksyn J., Tjoelker M.G., Hobbie S.E., Reich P.B., Eissenstat D.M. 2007. Controls over leaf and litter calcium concentrations among temperate trees. Biogeochemistry 86:175–187.
  • Dong SF., Neilsen, D., Neilsen G.H., Weis M. 2003. A scanner-based root image acquisition technique for measuring roots on a rhizotron window. Hortscience 38: 1385–1388.
  • Ephrath J.E., Silberbush M., Berliner P.R. 1999. Calibration of minirhizotron readings against root length density data obtained from soil cores. Plant and Soil 209: 201–208.
  • Escamilla J.A., Comerford N.B., Neary D.G. 1991. Soil-core break method to estimate pine root distribution. Soil Science Society of America Journal 55: 1722–1726.
  • Hansson A.C., Andren O. 1987. Root dynamics in barley, lucerne and meadow fescue investigated with a mini-rhizotron technique. Plant and Soil 103: 33–38.
  • Heeraman D.A., Juma N.G. 1993. A comparison of minirhizotron, core and monolith methods for quantifying barley (Hordeum vulgare L.) and faba bean (Vicia faba L.) root distribution. Plant and Soil 148: 29–41.
  • Hobbie S.E., Reich P.B., Oleksyn J., Ogdahl M., Zytkowiak R., Hale C., Karolewski P. 2006. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87: 2288–2297.
  • Hobbie S.E., Ogdahl M., Chorover J., Chadwick O.A., Oleksyn J., Zytkowiak R., Reich P.B. 2007. Tree species effects on soil organic matter dynamics: the role of soil cation composition. Ecosystems 10: 999–1018.
  • Knight K.S., Oleksyn J., Jagodzinski A.M., Reich P.B., Kasprowicz M. 2008. Overstory tree species regulate colonization by native and exotic plants: a source of positive relationships between understorey diversity and invasibility. Diversity and Distributions 14: 666–675.
  • Pages L., Bengough A.G. 1997. Modelling minirhizotron observations to test experimental procedures. Plant and Soil 189: 81–89.
  • Parker C.J., Carr M.K., Jarvis, N.J., Puplampu B.O., Lee V.H. 1991. An evaluation of the minirhizotron technique for estimating root distribution in potatoes. Journal of Agricultural Science 116: 341–350.
  • Przybyl K., Karolewski P., Oleksyn J., Labedzki A., Reich P.B. 2008. Fungal diversity of Norway spruce litter: effects of site conditions and premature leaf fall caused by bark beetle outbreak. Microbial Ecology 56: 332–340.
  • Reich P.B., Oleksyn J., Modrzynski J., Mrozinski P., Hobbie S.E., Eissenstat D.M., Chorover J., Chadwick O.A., Hale C.M., Tjoelker M.G. 2005. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecology Letters 8: 811–818.
  • Samson B.K., Sinclair T.R. 1994. Soil core and minirhizotron comparison for the determination of root length density. Plant and Soil 161: 225–232.
  • Schmid I., Kazda M. 2002. Root distribution of Norway spruce in monospecific and mixed stands on different soils. Forest Ecology and Management 159: 37–47.
  • Smit A.L, George E., Groenwold J. 2000. Root observations and measurements at (transparent) interfaces with soil. In: Root Methods: A Handbook. Smit A.L. et al. (eds). Springer, Berlin, pp. 236–271.
  • Szymanski S. 1982. Growth of some forest tree species in the first 10 years on fairly poor mixed conifer sites. Sylwan 126(7): 11–29 [in Polish].
  • van Noordwijk M., Brouwer G., Meijboom F., do Rosario M., Oliveira G., Bengough A.G. 2000. Trench profile techniques and core break methods. In Root Methods: A Handbook. Smit A.L. et al. Springer, Berlin, pp. 211–233.
  • Withington J.M., Reich P.B., Oleksyn J. Eissenstat D.M. 2006. Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs 76: 381–397.
  • Withington J.M., Elkin A.D., Bulaj B., Olesinski J., Tracy K.N., Bouma T.J., Oleksyn J., Anderson L.J., Modrzynski J., Reich P.B., Eissenstat D.M. 2003. The impact of material used for minirhizotron tubes for root research. New Phytologist 160: 533–544.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-8d40c353-5174-4b60-a544-cb059b4ef63a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.