PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 47 | 1 |

Tytuł artykułu

Role of non-zygotic parental genes in embryogenesis and endosperm development in flowering plants

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
After a prolonged period of uncertainty about the precise role of maternal genes in initiating embryogenesis in flowering plants, considerable evidence for the involvement of maternal genes in embryo and endosperm development in Arabidopsis thaliana has accumulated in recent years. Much attention has centered on a group of mutants known as fis, which display an ability to initiate partial embryogenesis and endosperm development in the absence of double fertilization. This article presents a brief overview of our current understanding of the role of non-zygotic parental genes in the development of these products of double fertilization in A. thaliana. Evidence shows that the expression of paternal alleles of some genes is frequently delayed during embryogenesis and endosperm development, and that the silencing occurs at the transcriptional level by genomic imprinting.

Wydawca

-

Rocznik

Tom

47

Numer

1

Opis fizyczny

p.31-36,ref.

Twórcy

autor
  • The Ohio State University, 318 West 12th Avenue, Columbus, Ohio 43210, USA

Bibliografia

  • Adams S, Vinkenoog R, Spielman M, Dickinson HG, and Scott RJ. 2000. Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development 127: 2493-2502.
  • Baroux C, Blanvillain R, and Gallois P. 2001. Paternally inherited transgenes are down-regulated but retain low activity during early embryogenesis in Arabidopsis. FEBS Letters 509: 11-16.
  • Castle LA, Errampalu D, Atherton TL, Franzmann LH, Yoon ES, and Meinke DW. 1993. Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Molecular and General Genetics 241: 504-514.
  • Chaudhury AM, and Berger F. 2001. Maternal control of seed development. Seminars in Cell and Developmental Biology 12: 381-386.
  • Chaudhury AM, Koltunow A, Payne T, Luo M, Tucker MR, Dennis ES, and Peacock WJ. 2001. Control of early seed development. Annual Review of Cell and Developmental Biology 17: 677-699.
  • Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, and Peacock WJ. 1997. Fertilization-independent seed development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences U.S.A. 94: 4223-4228.
  • Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, and Fischer RL. 2002. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110: 33-42.
  • Clark JK, and Sheridan WF. 1991. Isolation and characterization of 51 embryo-specific mutations of maize. Plant Cell 3: 935-951.
  • Colombo L, Franken J, Van Der Krol AR, Wittich PE, Dons HJM, and Angenent GC. 1997. Downregulation of ovule-specific MADS box genes from Petunia results in maternally controlled defects in seed development. Plant Cell 9: 703-715.
  • Davidson EH. 1986. Gene activity in early development, Third Ed. Academic Press, Orlando.
  • Golden TA, Schauer SE, Lang JD, Pien S, Mushegian AR, Grossniklaus U, Meinke DW, and Ray A. 2002. SHORT INTEGUMENTS 1/SUSPENSOR1/CARPEL FACTORY, a dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. Plant Physiology 130: 808-822.
  • Grini PE, Jürgens G, and Hulskamp M. 2002. Embryo and endosperm development is disrupted in the female gametophytic capulet mutants of Arabidopsis. Genetics 162: 1911-1925.
  • Grossniklaus U, Spillane C, Page DR, and Köhler C. 2001. Genomic imprinting and seed development: endosperm formation with and without sex. Current Opinion in Plant Biology 4: 21-27.
  • Grossniklaus U, Vielle-Calzada J-P, Hoeppner MA, and Gagliano WB. 1998. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280: 446-450.
  • Guitton A-E, Page DR, Chambrier P, Lionnet C, Faure J-E, Grossniklaus U, and Berger F. 2004. Identification of new members of fertilization independent seed polycomb group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131: 2971-2981.
  • Kasha KJ, and Kao KN. 1970. High frequency haploid production in barley (Hordeum vulgare L.). Nature 225: 874-876.
  • Kinoshita T, Yadegari R, Harada JJ, Goldberg RB, and Fischer RL. 1999. Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11: 1945-1952.
  • Kiyosue T, Ohad N, Yadegai R, Hannon M, Dinneny J, Wells D, Katz A, Margossian L, Harada JJ, Goldberg RL, and Fischer RL. 1999. Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proceedings of the National Academy of Sciences U.S.A. 96: 4186-4191.
  • Köhler C, Hennig L, Spillane C, Pien S, Gruissem W, and Grossniklaus U. 2003. The polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes and Development 17: 1540-1553.
  • KoltunowAM. 1993. Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5: 1425-1437.
  • Koltunow AM, and Grossniklaus U. 2003. Apomixis: a developmental perspective. Annual Review of Plant Biology 54: 547-574.
  • Lacadena J-R. 1974. Spontaneous and induced parthenogenesis and androgenesis. In: Kasha KJ [ed.], Haploids in higher plants. Advances and potential, 13-32. The University of Guelph, Guelph.
  • Luo M, Bilodeau P, Dennis ES, Peacock WJ, and Chaudhury A. 2000. Expression of parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proceedings of the National Academy of Sciences U.S.A. 97: 10637-10642.
  • Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, and Chaudhury AM. 1999. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences U.S.A. 96: 296-301.
  • Meinke DW. 1994. Seed development in Arabidopsis thaliana. In: Meyerowitz EM and Somerville CR [eds.], Arabidopsis, 253-295. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  • Ohad N, Margossian L, Hsu Y-C, Williams C, Repetti P, and Fischer RL. 1996. A mutation that allows endosperm development without fertilization. Proceedings of the National Academy of Sciences U.S.A. 93: 5319-5324.
  • Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, and Fischer RL. 1999. Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11: 407-415.
  • Raghavan V. 1997. Molecular embryology of flowering plants. Cambridge University Press, New York.
  • Raghavan V. 2005. Somatic embryogenesis. In: Murch SJ and Saxena PK [eds.], Journey of a single cell to a plant, 203-226. Science Publishers Inc., Enfield.
  • Ramachandran C, and Raghavan V. 1992. Apomixis in distant hybridization. In: Kalloo G and Chowdhury JB [eds.], Distant hybridization in crop plants, 106-121. Springer-Verlag, Berlin.
  • Ray S, Golden T, and Ray A. 1996. Maternal effects of the short integument mutation on embryo development in Arabidopsis. Developmental Biology 180: 365-369.
  • Reyes JC, and Grossniklaus U. 2003. Diverse functions of polycomb group proteins during plant development. Seminars in Cell and Developmental Biology 14: 77-84.
  • Reynolds TL. 1997. Pollen embryogenesis. Plant Molecular Biology 33: 1-10.
  • Robinson-Beers K, Pruitt RE, and Gasser CS. 1992. Ovule development in wild-type Arabidopsis and two female-sterile mutants. Plant Cell 4: 1237-1249.
  • Russinova E, and De Vries SC. 2000. Parental contribution to plant embryos. Plant Cell 12: 461-463.
  • Schauer SE, Jacobsen SE, Meinke DW, and Ray A. 2002. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends in Plant Science 7: 487-491.
  • Schölten S, Lörz H, and Kranz E. 2002. Paternal mRNA and protein synthesis coincides with male chromatin decondensation in maize zygotes. Plant Journal 32: 221-231.
  • Scott RJ, Spielman M, Bailey J, and Dickinson HG. 1998a. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125: 3329-3341.
  • Scott RJ, Vinkenoog R, Spielman M, and Dickinson HG. 1998b. Medea: murder or mistrial? Trends in Plant Science 3: 460-461.
  • Springer PS, Holding DR, Groover A, Yordan C, and Martienssen RA. 2000. The essential Mcm7 protein PROLIFERA is localized to the nucleus of dividing cells through the G1 phase and is required maternally for early Arabidopsis development. Development 127: 1815-1822.
  • Vielle-Calzada J-P, Thomas J, Spillane C, Coluccio A, Hoeppner MA, and Grossniklaus U. 1999. Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes and Development 13: 2971- 2982.
  • Vielle-Calzada J-P, Baskar R, and Grossniklaus U. 2000. Delayed activation of the paternal genome during seed development. Nature 404: 91-94.
  • Vielle-Calzada J-P, Baskar R, and Grossniklaus U, 2001. Early paternal gene activity in Arabidopsis - reply. Nature 414: 710.
  • Vinkenoog R, Spielman M, Adams S, Fischer RL, Dickinson HG, and Scott RJ. 2000. Hypomethylation promotes autonomous endosperm development and rescues postfertilization lethality in fie mutants. Plant Cell 12: 2271-2232.
  • Weijers D, Geldner N, Offringa R, and Jürgens G. 2001. Early paternal gene activity in Arabidopsis. Nature 414: 709-710.
  • Wijowska M, Kuta E, and Przywara L. 1999. Autonomous endosperm induction by in vitro culture of unfertilized ovules of Viola odorata L. Sexual Plant Reproduction 12: 164-170.
  • Yadegari R, Kinoshita T, Lotan O, Cohen G, Katz A, Choi Y, Katz A, Nakashima K, Harada JJ, Goldberg RB, Fischer RL, and Ohad N. 2000. Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of- origin effects on seed development by distinct mechanisms. Plant Cell 12: 2367-2381.
  • Yang HY, and Zhou C. 1982. In vitro induction of haploid plants from unpollinated ovaries and ovules. Theoretical and Applied Genetics 63: 97-104.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-89a617d5-4aa7-49ed-b80c-28b6ac64e984
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.