PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 21 | 2 |

Tytuł artykułu

Some physiological and biochemical aspects of plant resistance to cadmium effect. I. Antioxidative system

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The hitherto studies on the effect of cadmium on plants have shown that it causes intensification of two types of unfavorable processes in plants: inactivation of macromolecules and cellular structures and induction of oxidative stress. In response, the plant organism activates processes restoring its homeostasis, i.e. those which remove reversible and irreversible changes. In removing the former a particular role is played by the antioxidative system containing enzymatic and nonenzymatic antioxidants, and removing the active forms of oxygen. The strategy of stress tolerance plays an important role in the plant resistance to cadmium and other toxic metals.

Wydawca

-

Rocznik

Tom

21

Numer

2

Opis fizyczny

p.175-188,fig.

Twórcy

autor
  • Agricultural University, Wolynska 35, 60-637 Poznan, Poland

Bibliografia

  • Alscher RG. 1989. Biosynthesis and antioxidant function of glutathione in plants. Physiol. Plant. 77,457–464.
  • Asada, K. 1992. Ascorbate peroxidase — a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85, 235–241.
  • Asada, K., Takahashi, M. 1987. Production and scavenging of active oxygen in photosynthesis. In Photoinhibition (D.J. Kyle, C.B. Osmond and C.J. Arntzen, eds.), Elsevier, New York, pp 227–287.
  • Baker, AJM. 1981. Accumulators and excluders — strategies in the response of plants to heavy metals. J. Plant Nutrit. 3, 643–654.
  • Baker, AJM, Walker, PL. 1990. Ecophysiology of metal uptake by tolerant plants. In: Heavy metal tolerance in plants Evolutionary aspects (AJ Shaw, ed.) pp 155–177, CRC Press, Boca Raton.
  • Barcelo, A.R., M.A. Ferrer, E.G. Florenciano, and R. Munoz. 1991. The tonoplast localization of two basic isoperoxidases of high pI in Lupinus. Bot. Acta 104, 272–278.
  • Barcelo, J, Poschenrieder, Ch, Andren, I, Gunse, B. 1986. Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender). I. Effects of Cd on water potantial relative water content and cell elasticity. J. Plant Physiol. 125, 7–25.
  • Barcelo, J, Vazquez, MD, Poschenrieder, Ch. 1988. Structural and ultrastructural disorders in cadmium-treated bush bean plants (Phaseolus vulgaris L.). New Phyto. 108, 37–49.
  • Bartosz, G. 1995. Druga twarz tlenu. PWN, Warszawa.
  • Baszyński, T, Wajda, L, Wolińska, D, Krupa, Z, Tukendorf, A. 1980. Photosynthetic activities of cadmium- treated tomato plants. Physiol. Plant. 48, 365–370.
  • Baum, JA, Scandalios, JG. 1981. Isolation and characterization of cytosolic and mitochondrial superoxide dismutases of maize. Arch. Biochem. Biophys. 206, 249–261.
  • Bielański, A. 1987. Podstawy chemii nieorganicznej. PWN, Warszawa.
  • Bowler, C., M. Van Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43, 83–116.
  • Brunner, M., Kocsy, G., Ruegsegger, A., Schmutz, D., Brunold, C. 1995. Effect of chilling on assimilatory sulfate reduction and glutathione synthesis in maize. J. Plant Physiol. 146, 743–747.
  • Burzyński, M. 1987. The influence of lead and cadmium on the absorption and distribution of potassium, calcium, magnesium and iron in cucumber seedlings. Acta Physiol. Plant. 11, 137–145.
  • Burzyński M, Buczek J. 1994. The influence of Cd, Pb, Cu and Ni on NO₃⁻ uptake by cucumber seedlings. I. Nitrate uptake and respiration of cucumber seedlings roots treated with Cd, Pb, Cu and Ni. Acta Physiol. Plant. 16, 291–296.
  • Cakmak, I., and Horst, W.J. 1991. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxide activities in root tips of soybean (Glycine max). Physiol. Plant. 8, 463–468.
  • Cakmak, I., Marschner, H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 98, 1222–1227.
  • Caldwell CR, Hang A. 1982. Divalent cation inhibition of barley root plasma membrane bound Ca²⁺ ATPase activity and its reversal by monovalent cations. Physiol. Plant. 54, 112–118.
  • Chen, GX, Asada, K. 1989. Ascobate peroxidase in tea leaves. Occurrence of two isozymes and their differences in enzymatic and molecular properties. Plant Cell Physiol. 30, 987–998.
  • Chongpraditinun, P., Mori, S., and Chino, M. 1992. Excess copper induces a cytosolic Cu,Zn-superoxide dismutase in soybean root. Plant Cell Physiol. 33, 239–244.
  • Clarkson, DT, Lűttge, U. 1989. Divalent cations, transport and compartmentation. Prog. Bot. 51, 93–112.
  • Costa G., Morel JL. 1993. Cadmium uptake by Lupinus albus (L.): cadmium excretion, a possible mechanism of cadmium tolerance. J. Plant Nutr. 16, 1921–1929.
  • Dalton, D. A. 1995. Antioxidant defenses of plants and fungi. In: Oxidant-Induced stress and antioxidant defenses in Biology. Ed. S. Ahmad, pp 298–355. Chapman & Hall, New York.
  • Del Rio, L.A., Sandalio, L.M., Yáńez, J., and Gómez, M. 1985. Induction oh a manganese- containing superoxide dismutase in leaves of Pisum sativum L. by high nutrient levels of zinc and manganese. J. Inorg. Biochem. 24, 25–34.
  • De Vos CH, De Waal MAM, Vooijs R, Schat H, Ernst WHO. 1991. Increased resistance to copper-induced damage of root cell plasmalemma in copper tolerant Silene cucubalus. Physiol. Plant. 82, 523–528.
  • Duke, MV, Salin, ML. 1985. Purification and characterization of an iron-containing superoxide dismutase from eukaryote, Ginko biloba. Arch. Biochem. Biophys. 243, 305–314.
  • Feierabend J, Schaan C, Hertwig B. 1992. Photoinactivation of catalase occurs under both high and low temperature stress conditions and accompanies photoinhibition of photosystem II. Plant Physiol. 100, 1554–1561.
  • Fitter AH, Hay RKM. 1995. Environmental physiology of plants. Academic Press, London.
  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM. 1997. Hydrogen peroxide- and glutathione- associated mechanisms of acclimatory stress tolerance and signaling. Physiol. Plant. 100, 241–254.
  • Fry, S.C. 1995. Polysaccharide-modifying enzymes in the plant cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 497–520.
  • Fry, S.C., Miller J.G. 1989. H₂O₂ — dependent cross-linking of feruloyl-pectines in vivo. Food Hydrocolloids 1, 395–397.
  • Godbold, DL. 1991. Cadmium uptake in Norway spruce (Picea abies (L.) karst) seedlings. Three Physiol. 9, 349–358.
  • Greger M, Lindberg S. 1987. Effects of Cd²⁺ and EDTA on young sugar beets (Beta vulgaris). II. Net uptake and distribution of Mg²⁺, Ca²⁺ and Fe²⁺/Fe²⁺. Physiol. Plant. 69, 81–86.
  • Greger, M, Brammer, E, Lindberg, S, Lisson, G, Idestam-Lmquist, J. 1991. Uptake and physiological effects of cadmium in sugar beet (Beta vulgaris) related to mineral provision. J. Exp. Bot. 42, 729–737.
  • Gross GG, Janse C, Elstner EF. 1977. Involvement of malate, monophenols, and the superoxide radical in hydrogen peroxide formation by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). Planta 136, 271–276.
  • Guri, A. 1983. Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone. Can. J. Plant Sci. 63, 733–737.
  • Haber, F., Weiss, J. 1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. Royal Soc. A. 147, 332.
  • Halliwell, B. 1978. Lignin synthesis: the generation of hydrogen peroxide and superoxide by hors reddish and its stimulation by manganese (II) and phenols. Planta 140, 81–88.
  • Hausladen, A., Madamanchi, N.R., Fellows, S., Alcher, R.G., and Amundson, R.G. 1990. Seasonal changes in antioxidants in red spruce as affected by ozone. New Phytol. 115, 447–458.
  • Huttunen, S., and Heiska, E. 1988. Superoxide dismutase (SOD) activity in Scots pine (Pinus silvestris L.) and Norway spruce (Picea albies L. Karst.) needles in northern Finland. Eur. J. For. Pathol. 18, 343–350.
  • Jäger, H-J., Bender, J. and Grűnhage, L. 1985. Metabolic responses of plants differing in SO₂ sensitivity towards SO₂ fumigation. Environ. Pollut. 39, 317–335.
  • Jensen TE, Baxter M, Rachlin JW, Jani V. 1982. Uptake of heavy metals Plectonema boryana (Cyanophyceae) into cellular components, especially polyphosphate bodies: an x-ray energy dispersive study. Environ. Poll. Ser. Ser A 27, 119–127.
  • Jones, G.J., Nichols, P.B., Johns, R.S., and Smith, J.B. 1987. The effect of mercury and cadmium on the fatty acid and sterol composition of the marine diatom Asterionella glacialis. Phytochemistry 26, 1343–1348.
  • Kabata-Pendias, A, Bolibrzuch, E. 1976. Wpływ kadmu na zawartość metali ciężkich w trawie. Rocz. Naul Roln. ser. A 101, 35–45.
  • Khan, D.H., Duckett, J.G., Frankland, B., Kirkham, J.B. 1984. An X-ray microanalytical study of the distribution of cadmium in roots of Zea mays L. J. Plant Physiol. 115, 19–28.
  • Kocjan, G, Łastowski, K. 1995. Główne koncepcje badań wpływu stresów na rośliny. In: Ołów w komórkach roślinnych (Ed. A. Wożny), Sorus, Poznań.
  • Krupa, Z, Baszyński, T. 1995. Some aspects of heavy metals toxicity towards photosynthetic apparatus — direct and indirect effects on light and dark reactions. Acta Physiol. Plant. 17, 177–190.
  • Krupa, Z, Skórzyńska, E, Maksymiec, W, Baszyński, T. 1987. Effect of cadmium treatment on the photosynthetic apparatus and its photochemical activities in greening radish seedlings. Photosynthetica 21, 156–164.
  • Lata, S. 1991. Phasic pre-treatment effects of cadmium on seedling growth and activity of hydrolytic enzymes in Paseolus aureus cultivars. J. Environ. Biol. 12, 299–306.
  • Levitt, J. 1980. Responses of plants to environmental stress. Academic Press, New York.
  • Luna CM, Gonzales CA, Trippi VS. 1994. Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol. 35, 11–15.
  • Ma JF, Nomoto K. 1991. Inhibition of mugineic acid-ferric complex uptake in barley by cooper, zinc and cobalt. Physiol. Plant. 89, 331–334.
  • Mandamanchi NR, Alscher RG. 1991. Metabolic bases for differences in sensitivity of two pea cultivars to sulfur dioxide. Plant Physiol. 97, 88–93.
  • Matters, G.L., and Scandalios, J.G. 1987. Synthesis of isoenzymes of superoxide dismutase in maize leaves in response to O₃, SO₂ and elevated O₂. J. Exp. Bot. 38, 842–852.
  • May, MJ, and CJ Leaver. 1993. Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol. 103, 621–627.
  • McKersie BD, Leshem YY. 1994. Stress and stress coping in cultivated plants. Kluwer Academic Publisher, Dordrecht.
  • Monk, L.S. and H.V. Davies. 1989. Antioxidant status of the potato tuber and Ca⁺² deficiency as a physiological stress. Physiol. Plant. 75, 411–416.
  • Moral, R, Palacios, G, Gomez, I, Navarro-Pedreno, J, Mataix, J. 1994. Distribution and accumulation of heavy metals (Cd, Ni and Cr) in tomato plant. Fresenius Envir. Bull. 3, 395–399.
  • Mukherjee S.P., I Choudhuri, M.A. Choudhuri 1985. Implication of hydrogen peroxide — ascorbate system on membrane permeability of water stressed Vigna seedlings. New Phytol. 99, 355–360.
  • Padmaja, K, Prasad, DDK, Prasad, ARK. 1990. Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosynthetica 24, 399–405.
  • Parekh, D, Puranik, RM, Srivastava, HA. 1990. Inhibition of chlorophyll biosynthesis by cadmium in greening maize leaf segments. Biochem. Physiol. Pflanz. 186, 239–242.
  • Perl, A., R. Perl-Treves, S. Galili, D. Aviv, E. Shalgi, S. Malkin, and E. Galun. 1993. Enhanced oxidative stress defense in transgenic potato expressing tomato Cu,Zn superoxide dismutases. Theor. Appl. Gen. 85, 568–576.
  • Peters, JL, Castillo, FJ, Heath, RL 1989. Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulphur dioxide. Plant Physiol. 89, 159–164.
  • Pitcher, L.H., E. Brennan, A. Hurley, P. Dunsmuir, J.M. Tepperman, and B.A. Zilinskas. 1991. Overproduction of petunia copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol. 97, 452–455.
  • Przymusiński, R., R. Rucińska, and E. Gwóźdź. 1995. The stress-stimulated 16 kDa polipeptide from lupine roots has properties of cytosolic Cu:Zn-superoxide dismutase. Env. Exp. Bot. 35, 485–495.
  • Ranieri, A., Lencioni, L., Schenone, G., Soldatini, G.F. 1993. Glutathione-ascorbic acid cycle in pumpkin plants grown under polluted air in open-top chambers. J. Plant Physiol. 142, 286–290.
  • Rascio N, Vecchia FD, Ferretti M, Merlo L, Ghisi R. 1993. Some effects of cadmium on maize plants. Arch. Environ. Contam. Toxicol. 25, 244–249.
  • Rauser, W.E. 1987. Changes in glutathione content of maize seedlings exposed to cadmium. Plant Science 51, 171–175.
  • Rauser, W.E. 1995. Phytochelatins and related peptides. Plant Physiol. 109, 1141–1149.
  • Rucinska R, Tukendorf A, Stroiński A, Gwóźdź 1997. Phytochelatins and antioxidant enzymes in lupin roots exposed to heavy metals. Biol. Bull. Poznań 34 (Suppl.), 50–51.
  • Rűegsegger, A., D. Schmutz, and C. Brunold. 1990. Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol. 93, 1579–1584.
  • Rűegsegger, A. and C. Brunold. 1992. Effect of cadmium on γglutamylcysteine synthesis in maize seedlings. Plant Physiol. 99, 428–433.
  • Scandalios, J.G. 1990. Response of plant antioxidant defense genes to environmental stress. Adv. Genet. 28, 1–41.
  • Scandalios, J.G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101, 7–12.
  • Sela M, Tel-Or E, Fritz E, Huttermann A. 1988. Localization and toxic effects of cadmium, copper, and uranium in Azolla. Plant Physiol. 88, 30–36.
  • Sen Gupta, A., Alcher, R.G., and McCune, D. 1991. Responses of photosynthesis and cellular antioxidants to ozone in Populus leaves. Plant Physiol. 96, 650–655.
  • Sen Gupta, A., J.L. Heinen, A.S. Holoday, J.J. Burk, and R.D. Allen. 1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 90, 1629–1633.
  • Showalter, A.M. 1993. Structure and function of plant cell wall proteins. Plant Cell, 5, 9–23.
  • Siedlecka, A. 1995. Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Soc. Bot. Pol. 64, 265–272.
  • Siedlecka, A. and Baszyński, T. 1993. Inhibition of electron flow around photosystem I in chloroplasts of Cd- treated maize plants is due to Cd-induced iron deficiency. Physiol. Plant. 83, 199–202.
  • Smith, I.K. 1985a. Stimulation of glutathione synthesis in photorespiring plants by catalase inhibitor. Plant Physiol. 79, 1044–1047.
  • Somashekaraiah, B.V., Padmaja, K., and Prasad, A.R.K. 1992. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorophyll degradation. Physiol. Plant. 85, 85–89.
  • Sparrow, LA, Salardini, AA, Bishop, AC. 1993. Field studies of cadmium in potatoes (Solanum tuberosum L.). II. Response of cv. Russet Burbank and Kennebec to two double superphosphates of different cadmium concentration Aust. J. Agric. Res., 44, 855–861, 1993.
  • Steffens, JC. 1990. The heavy metal-binding peptides of plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41, 533–575.
  • Stobart, AK, Griffiths, WT, Ameen-Bukhari, I, Sherwood, RP. 1985. The effect of Cd²⁺ on the biosynthesis of chlorophyll in leaves of barley. Physiol. Plant. 63, 293–298.
  • Stroiński A. 1995a. Influence of cadmium on the hostpathogen system. Effect of exogenous spermine on the tuber (Solanum tuberosum L.), cadmium and Phytophthora infestans relations. Proceedings of 3th Congress of ESPP, 527–532, Poznań.
  • Stroiński A. 1995b. Effect of cadmium and Phytophthora infestans on peroxidase activity potato leaves and tubers. Roczniki AR w Poznaniu CCLXXVI, Ogrodn. 23, 53–61, 1995b.
  • Stroiński A. 1995c. Wpływ kadmu na poziomy cysteiny, glutationu I fitochelatyn w bulwie ziemniaka. 31 Zjazd PTBiochemicznego 54D, Warszawa.
  • Stroiński, A. 1997. Effect of cadmium on the hostpathogen system. V. Effect of exogenous dicyclohexylamine on potato tubers (Solanum tuberosum L.), cadmium and Phytophthora infestans relations. J. Plant Physiol. 150, 178–183.
  • Stroiński, A. and A. Bandurska. 1996. Cadmium influence on antioxidants levels in potato tuber. In Proceedings of the Conference: Ekofizjologiczne aspekty reakcji roślin na działanie abiotycznych czynników stresowych. Eds S. Grzesiak and Miszalski Z., pp 191–198 (English abstract), Kraków.
  • Stroiński, A., J. Floryszak-Wieczorek 1990. Effects of cadmium on the host-pathogen system. III. Influence of cadmium and Phytophthora infestans on membrane permeability of potato leaves. Biochem. Physiol. Pflanzen 186, 417–421.
  • Stroiński, A., J. Floryszak-Wieczorek 1993. Effects of cadmium on the host-pathogen system. IV. Influence of cadmium and Phytophthora infestans on membrane permeability of potato tuber. J. Plant Physiol. 142, 575–578.
  • Stroiński, A., Kozłowska, M. 1997. Cadmium-induced Oxidative Stress in Potato Tuber. Acta Soc. Bot. Pol. 66, 189–195.
  • Stroiński, A., and Szczotka, Z. 1989. Effect of cadmium and Phytophthora infestans on polyamine levels in potato leaves. Physiol. Plant. 77, 244–246.
  • Stroiński A, and Zielezińska M. 1997. Cadmium effect on hydrogen peroxide, gluthatione and phytochelatins levels in potato tuber. Acta Physiol. Plant. 19, 127–136.
  • Stroiński, A., J. Floryszak-Wieczorek, and A. Woźny 1990a. Effects of cadmium on the host- pathogen system. I. Alterations of potato leaves and Phytophthora infestans relations. Biochem. Physiol. Pflanzen 186, 43–54.
  • Stroiński, A., A. Woźny, and J. Floryszak-Wieczorek 1990b. Effects of cadmium on the host-pathogen system. II. Alterations of potato tuber and Phytophthora infestans relations. Biochem. Physiol. Pflanzen 186, 229–238.
  • Stroiński A., J. Kubiś, M. Zielezińska 1997. Cadmium influence on enzymatic antioxidants in potato tuber. International Conference: Molecular Biology of Plant under Environmental stress, September 17–19, 1997, Poznań.
  • Stroiński, A, Kubiś, J, Zielezińska 1998. Wpływ kadmu na aktywność reduktazy glutationowej w bulwie ziemniaka. Materiały 51 Zjazdu PTBot, 461, Gdańsk.
  • Sundaralingam, M, Jensen, LH. 1965. Crystal and molecular structure of phospholipid component: L-á-glycerolphosphoryl-choline cadmium chloride trihydrate. Science 150, 1035–1036.
  • Takahama, U., and T. Oniki 1992. Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant Cell Physiol. 33, 379–387.
  • Tanaka, K., Suda, Y., Kondo, N., Sugahara, K. 1988. O₃ tolerance and the ascorbate-dependent H₂O₂ decomposing system in chloroplasts. Plant Cell Physiol. 26, 1425–1431.
  • Tepperman, J.M., and P. Dunsmuir 1990. Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol. Biol. 14, 50–1511.
  • Thurman, BA. 1981. Mechanism of metal tolerance in higher plants. In: Effect of heavy metal pollution on plants. Ed. NW Lepp, Vol. 2, 238–249, Applied Science Publishers, Barking.
  • Tukendorf, A. 1993a. Fitochelatyny — roślinne peptydy wiazżace metale cieżkie. Postepy Biochemii 39, 60–67.
  • Tukendorf, A. 1993b. The role of glutathione in detoxification of cadmium and excess copper in spinach plants. Acta Physiol. Plant. 15, 175–183.
  • Tukendorf, A. and W.E. Rauser. 1990. Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Science 70, 155–166.
  • Van Camp, W., H. Willekens, C. Bowler, M. Van Montagu, D. Inze, P. Reupold-Popp, H. Sandermann Jr, and C. Langerbartels. 1994. Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Bio/Technology, 12, 165–168.
  • Vögeli-Lange R, Wagner GJ. 1990. Subcellular localization of cadmium-binding peptides in tobacco leaves. Plant Physiol. 92, 1086–1093.
  • Wallace A, Wallace GA, Cha JW. 1992. Some modifications in trace metal toxicities and deficiencies in plants resulting from interactions with other elements and chelating agents. The special case of iron. J. Plant Nutr. 15, 1589–1598.
  • Wingsle, G., and Hällgren, J-E. 1993. Influence of SO₂ and NO₂ exposure on glutathione, superoxide dismutase and glutathione reductase activities in Scots pine needles. J. Exp. Bot. 44, 463–470.
  • Wingsle, G., Mattson, A., Ekblad, A., Hällgren, J-E., Selstam, E. 1992. Activities of glutathione reductase and superoxide dismutase in relation to changes of lipids and pigments due to ozone in seedlings of Pinus sylvestris (L.). Plant Sci. 82, 167–178.
  • Woźny, A, Krzesłowska, M, Tomaszewska, B. 1995b. Odporność na ołów. W: Ołów w komórkach roślinnych (Ed. A. Woźny), Sorus, Poznań.
  • Woźny, A, Stroiński, A, Gwóźdź, E. 1990. Plant cell responses to cadmium. Wydawnictwo Naukowe UAM, Poznań.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-83e445c9-8beb-42eb-856b-f819376da1d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.