PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 05 | 2 |

Tytuł artykułu

Synthesis of siderophores by soil bacteria of the genus Pseudomonas under various culture conditions

Autorzy

Treść / Zawartość

Warianty tytułu

PL
Synteza sideroforów przez glebowe bakterie z rodzaju Pseudomonas w zmiennych warunkach hodowli

Języki publikacji

EN

Abstrakty

EN
The ability of six strains belonging to the genus Pseudomonas isolated from the rhizosphere of wheat to produce pyoverdin was examined. The studied strains demonstrated a varied level of production of the siderophore, depending on the culture conditions. The highest level of pyoverdin was determined after 72 hours of growth at 20-25°C in iron-free medium supplemented with succinate. The synthesis of pyoverdin by all the strains studied was strongly repressed by the addition of iron ions (III) to the growth medium. Calcium, cadmium and magnesium ions stimulated the synthesis of the siderophore examined, whereas zinc and lead ions partially decreased its level. Enrichment of the growth medium in cobalt ions completely inhibited the synthesis of siderophores as well as growth of the bacteria.
PL
Zbadano zdolność sześciu szczepów z rodzaju Pseudomonas wyizolowanych z ryzosfery pszenicy do produkcji piowerdyny (pyoverdin). Badane szczepy wykazywały zróżnicowany poziom produkcji tego sideroforu w zależności od warunków hodowli. Wykazano, że syntetyzowały one największą ilość piowerdyny w 72. godzinie hodowli i w temperaturze 20-25°C, na bezżelazowej bursztynianowej pożywce. Synteza piowerdyny u wszystkich badanych szczepów podlegała silnej represji po dodaniu do podłoża hodowlanego jonów żelaza (III). Jony wapnia, kadmu i magnezu w niewielkim stopniu stymulowały syntezę badanego sideroforu, natomiast jony cynku i ołowiu obniżały jej poziom. Wzbogacenie podłoża hodowlanego w jony kobaltu całkowicie zahamowało syntezę sideroforów i wzrost bakterii.

Wydawca

-

Rocznik

Tom

05

Numer

2

Opis fizyczny

p.33-44,fig.,ref.

Twórcy

autor
  • Warsaw Agricultural University, Nowoursynowska 159, 02-776 Warsaw, Poland

Bibliografia

  • Bano N., Musarrat J., 2004. Characterization of a novel carbofuran degrading Pseudomonas sp. with collateral biocontrol and plant growth promoting potential. FEMS Microbiol. Lett. 231, 13-17.
  • Budzikiewicz H., 1993. Secondary metabolites from fluorecent pseudomonads. FEMS Microbiol. Rev. 104, 209-228.
  • Budzikiewicz H., 1997. Siderophores of fluorescent pseudomonads. Z. Naturforsch. 52c, 713-720.
  • Bultreys A., Gheysen I., Maraite H., de Hoffmann E., 2001. Characterization of Fluorescent and Nonfluorescent Peptide Siderophores Produced by Pseudomonas syringae Strains and Their Potential Use in Strain Identification. App. Envir. Microbiol. 67(4), 1718-1727.
  • Carrillo-Castaneda G., Munoz J.J., Peralta-Videa J.R., 2005. Spectrophotometric method to determine the siderophore production by strains of fluorescent Pseudomonas in the presence of copper and iron. Microchemical J. 81(1), 35-40.
  • Cornelis P., Matthijs S., 2002. Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol. 4, 767-798.
  • Dao K.H., Hamer K.E., Clark E., Christine L, Harshman L.G., 1999. Pyoverdine production by Pseudomonas aeruginosa exposed to metals or an oxidative stress agent. Ecological Applications 9(2), 441-448.
  • Djibaoui R., Bensoltane A., 2005. Effect of iron and growth inhibitors on siderophores production by Pseudomonas fluorescens. African Journal of Biotechnology 4(7), 697-702.
  • Duffy B.K., Defago G., 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65, 2429-2438.
  • Handelsman J., Stabb E.V., 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8, 1855-1869.
  • Hofte M.L., Diels M.L., Verstraete W., 1989. Influence of stress factors on siderophore production by fluorescent Pseudomonads. Societe Belge de Biochimie, Gent. 4, B96.
  • Leong J., 1986. Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopathol. 24, 187-209.
  • Leong J., Bitter W., Koster M., Venturi V., Weisbeek P.J., 1991. Molecular analysis of iron transport in plant growth-promoting Pseudomonas putida WCS358. Biological Metals 4, 36-40.
  • Marek-Kozaczuk M., Skorupska A., 1997. Physiological parameters influencing of production siderophore by PGPR Pseudomonas sp. Acta Microbiol. Pol. 46 (2), 157-165.
  • Meyer J.M., 2000. Pyoverdins: Pigments, siderohores and potential taxonomic markers of fluorescent Pseudomonas species. Arch. Microbiol. 174, 135-142.
  • Meyer J.M., Abdallah M.A., 1978. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification, and physiochemical properties. Journal of General Microbiology 107, 319-328.
  • Meyer J.M., Geoffroy V.A., Baida N., Gardan L., Izard D., Lemanceau P., Achouak W., Palleroni N.J., 2002. Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl. Environ. Microbiol. 68, 2745-2753.
  • Nagarajkumar M., Bhaskaran R., Velazhahan R., 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159, 73-81.
  • Neilands J.B., 1995. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270, 26723-26726.
  • Raupach G.S., Kloepper J.W., 1998. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88, 1158-1164.
  • Ren D., Zuo R., Wood T.K., 2005. Qorum-sensing antagonist (5Z)-4-bromo-5-(bromomethylene)-3- butyl-2(5H)-furanone influences siderophore biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 66, 689-695.
  • Schwyn B., Neilands J.B., 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47-56.
  • Sharma A., Johri B.N., 2003a. Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol. Res. 158, 243-248.
  • Sharma A., Johri B.N., 2003b. Combat of iron-deprivation through a plant growth promoting fluorescent Pseudomonas strain GRP3A in mung bean (Vigna radiata L. Wilzeck). Microbiol. Res. 158, 77-81.
  • Stintzi A., Evans K., Meyer J.M., Poole K., 1998. Quorum sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdin biosynthesis. FEMS Microbiol. Lett. 166, 341-345.
  • Venturi V., Weisbeek P., Koster M., 1995. Gene regulation of siderophore-mediated iron acquisition in Pseudomonas: not only the Fur repressor. Mol. Microbiol. 17, 603-610.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-81aec635-e03b-4c7f-981c-6675e07cf7ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.