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Effects of NO-donors (3-morpholinosydnonimine -SIN-1 and sodium nitroprusside
NaNP) on the accumulation and degradation of oxidized LDL (ox-LDL) by
macrophages were studied. Ox-LDL, but not native-LDL (n-LDL) suppressed the
LPS-stimulated biosynthesis of NO by macrophages. SIN-1 at low concentrations
< 100 uM was without any effect while SIN-1 at high concentration (300 uM) and
NaNP (30—300 pM) stimulated the accumulation and degradation of ox-LDL by
macrophages. The pretreatment of macrophages with N”-monomethyl-L-arginine
(L-NMMA, 3 uM) for 24 hours had the same stimulatory effect. The inhibition of
endogenous formation of NO, by L-NMMA profoundly changed the pattern of
action of NO-donors on ox-LDL catabolism by macrophages; the stimulatory action
of SIN-1 was transformed to the inhibitory action on the accumulation and
degradation of ox-LDL whereas NaNP lost its stimulatory action entirely. Our
interpretation of this unexpected interactions between SIN-1, NaNP and L-NMMA
is as follows. Endogenous NO in macrophages inhibits the accumulation of ox-LDL
and therefore, the stimulatory effect of L-NMMA has been overcome by exogenous
NO from SIN-1. However, NO at high concentrations promotes lipid accumulation
in macrophages and thereby, in the absence of L-NMMA, SIN-1 at high
concentrations and NaNP produced a paradoxical stimulatory effect in
macrophages. NaNP is not a proper NO-donor and its mode of action differed from
that of SIN-1. In conclusion, NO at low physiological concentrations keeps
scavenger receptors of macrophages downregulated and hence endogenous NO may
show anti-atherogenic properties.
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INTRODUCTION

The role of low density lipoprotein (LDL) in the development of
atherosclerosis is well established and the recent evidence suggests that the
oxidation of LDL and its accumulation by macrophages in the arterial wall is
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a key event in this process (1). Several studies have demonstrated the inhibitory
effect of native LDL (n-LDL) and oxidized LDL (ox-LDL) on endothelium
dependent vasodilation (2—6). Ox-LDL and n-LDL (to a lesser extend) impair
the formation of endothelium derived relaxing factor (EDRF) which has been
identified as NO (7, 8). Ox-LDL, but not n-LDL have also been reported to
inactivate EDRF/NO after its release from endothelial cells (9, 10). The
impairment of the biological activity of EDRF/NO may be important for the
blood/arterial wall homeostasis, and may favour the development of
inappropriate vasoconstriction, platelet activation (11) and development of
atherosclerotic plaque.

Biosynthesis of EDRF/NO is not limited to the endothelial cells and
generation of NO has been shown in various mammalian tissues including
macrophages, neutrophils, Kupfer cells, adrenal tissue, and cerebellum (for
review, see 12). NO is synthetised from L-arginine by NO-synthase (NOS) (13)
and this synthesis is inhibited by N®-monomethyl-L-arginine (L-NMMA) (14).
Physiological activities of EDRF/NO are mimicked by nitrovasodilators
(NO-donors), such as sodium nitroprusside (NaNP) or 3-morpho-
linosydnonimine (SIN-1), a metabolite of molsidomine (15—17). Endogenous
and exogenous NO leads to intracellular accumulation of c-GMP. The
accumulation of lipids by macrophages is inhibited by activation of adenylate
cyclase e.g. by PGEs (18). Little is known about the effect of stimulations of
guanylate cyclase on this process. Presently we have investigated the influence
of SIN-1, NaNP and L-NMMA on metabolism of ox-LDL by rat
macrophages.

MATERIALS AND METHODS

Macrophages

Monocyte-derived residual macrophages were obtained from Wistar rats by peritoneal lavage
with solution of 0.15 M NaCl and 0.5 I.U. heparin/ml. For every series of experiments, peritoneal
lavage fluid obtained from 10—15 rats was pooled. Cells were separated by centrifugation at 700 g
for 15 minutes and washed three times with 1640-RPMI medium. After suspension of the cells in
1640-RPMI medium containing 10% foetal calf serum (FCS), glutamine (4mM), penicyllin (100
U/ml), streptomycin (100 pg/ml), and amphotericin B (0.25pug/ml), 1 ml aliquots containing
minimum 5Smln cells per dish were dispensed into plastic Petri dishes (diameter = 35mm) and
incubated at 37°C and 5% CO,. After 16 hours of incubation the dishes were extensively washed

with medium without foetal calf serum until no non-adherent cells in medium were found upon
microscope.

LDL isolation, modification and labelling

Human LDL (density 1.019—1.063 g/ml) were obtained from the pooled plasma of
ngrmolipemic subjects and prepared by differential ultracentrifugation (19). After the extensive
dialysis against PBS, LDL was oxidized and thereafter labelled with 12°J by the lodogen method
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(20). Oxydation of LDL was performed by incubation with 5SuM CuSO, at 37°C (21). The
LDL protein was determined by Lowry method (22). The final specific varied between
50—100cpm/ng protein.

Preincubation conditions

The monolayer macrophages were incubated in 1640-RPMI medium containing 10%
foetal calf serum (FCS), glutamine (4 mM), penicyllin (100 U/ml), streptomycin (100 pg/ml), and
amphotericin B (0.25 pg/ml) without (control) and with SIN-1 (30—300uM) or with sodium
nitroprusside (NaNP) (30—300uM) during 18 hours at 37°C in the 5% CO, atmosphere.

The preincubation was performed in the presence or absence of N°-monomethyl-L-arginine
(L-NMMA) 3 uM).

Measurement of '*°I-ox-LDL accumulation

The cells after preincubation described above undergo a 6 hour incubation at 37°C in the
5% CO, atmosphere with 100 pg/ml of !2°I-ox-LDL in 1640-RPMI medium containing 10% foetal
calf serum (FCS), glutamine (4mM), penicyllin (100 U/ml), streptomycin (100 pg/ml), and
amphotericin B (0.25pg/ml) and with or without the investigated substances. Thereafter the
medium was separated and used for the measurement of ox-LDL degradation products. The cell
monolayers were washed three times with 1ml PBS and dissolved in 500pul of 1N NaOH.
125].0x-LDL radioactivity in the cell lysates was determined in LKB-y-counter. The cell protein
was determined according to Lowry method. The resuts are presented as ng of !2°l-ox-LDL
protein per pg of the cell protein.

Measurement of '?°I-ox-LDL degradation

The degradation of ox-LDL was performed according to Goldstein and Brown (24, 25). The
TCA and AgNO, soluble degradation products of *2°l-ox-LDL in culture medium were measured
in LKB-y-counter. The results are presented as ng of '2°l-ox-LDL protein degradated per 6 hours
per pg of the cell protein.

Generation of NO

The generation of NO by the cells alone or in the presence of LPS (100 pg/ml), native LDL
(100—300 pg/ml) or in the presence of investigated NO-donors was performed in the culture media
according to Griess (23).

Data analysis

All results are presented as mean + SD. Statistical significance was calculated by the Student’s
t-test and presented as p < 0.001 — ***; p < 0.01 — **; p < 0.05 — *,
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Fig. la. Effect of increased concentrations of ox-LDL and n-LDL on NO production by
LPS-stimulated rats macrophages. NO (NO2/NO3) was measured according to Griess in medium
after 24 hour incubation of cells alone (control)) LPS (100ng/ml) or LPS + n-LDL or
LPS + ox-LDL (100—300 pg/ml). All results are presented as mean + SD n = 3—9. Statistical
significance: p < 0.001 — ***; p < 0.01 — **; p < 0.05 — * vs. LPS.
Fig. Ib. The amount of NO measured according to Griess in the medium of macrophages
co-incubated with NO-donors. Control — 18 hours incubation with 1640-RPMI medium followed
by 6 hours with the same medium containing 100 pg/ml 25]-0x-LDL. L-NMMA (3 uM), SIN-1
(3—300 M) and NaNP (3—300 uM) were added for 24 hour incubation with cells. All results are
presented as mean + SD n = 3—6. Statistical significance: p < 0.001 — ***; p < 0.01 — **;
p < 0.05 — * vs. control.
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RESULTS

a. Generation of NO as measured by the Griess reaction

In contrast to n-LDL, ox-LDL showed a non-significant tendency to
decrease NO generation by the LPS-activated macrophages (Fig. a).

L-NMMA (3 uM) decreased NO generation in non-stimulated macrophages
by 35% (Fig. 1b) and then SIN-1 at concentrations of 100 and 300 uM but not
NaNP (30—300 pM) increased the release on nitrites to the medium (Fig. 1b).

b. Accumulation and degradation of ox-LDL by macrophages

SIN-1 at concentrations of 30 and 100uM did not influence the
accumulation and degradation of ox-LDL (Fig. 2a, Fig. 3a). SIN-1 at

A. B.

ox-LDL (100ug/mi) L-NMMA (31M) + ox-LDL (100ug/ml)
250 T wx  kk 250 -

200 == 200 o=

g

ell protein [ng/ug]
Iy
o

g

3
o
125J-LDL /cell protein [ng/pg]

125J-LDL /c

50 <=

control 30uM  100uM  300pM 30pM  100uM  300uM control I0pM  100uM  300uM 0uM  100uM  300uM
SIN-1 SIN-1 SIN-1 NeNP  NaNP  NaNP I SIN-1 8IN-1 8IN-1 NaNP NaNP NaNP

L o

Fig. 2. Effect of SIN-1 and NaNP on '*’l-ox-LDL accumulation by macrophages. A. — without,
B in the presence of L-NMMA (3 uM). For details, see the legend to Fig /b. Statistical significance:
p <0.001 — ***; p <0.01 — **; p <0.05 — * vs. control.

concentrations of 300uM as well as NaNP at all concentrations used
(30—300 uM) increased the accumulation (Fig. 2a) and degradation (Fig. 3a) of
ox-LDL in macrophages. The preincubation of macrophages with L-NMMA
(3uM) significantly increased the accumulation (Fig. 2b) and degradation
(Fig. 3b) of ox-LDL. In the presence of L-NMMA (3 uM), SIN-1 (30—300 uM)
dose-dependently inhibited the accumulation (Fig. 2b) and degradation
(Fig. 3b) of ox-LDL, and prevented the NaNP induced potentiation of ox-LDL
accumulation by macrophages (Fig. 2b and Fig. 3b).
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Fig. 3. Effect of SIN-1 and NaNP on '?°l-ox-LDL degradation by macrophages. A. — without,
B in the presence of L-NMMA (3 uM). For details, see the legend to Fig /b. Statistical significance:
p < 0.001 —*** p < 0.01 —**;, p < 0.05—*vs. control.

DISCUSSION

Our data lead to a conclusion that endogenous NO from macrophages,
inhibits the uptake of ox-LDL by these cells. When the biosynthesis of NO is
inhibited an exogenous NO from SIN-1 may serve as a replacement for the
inhibition of catabolism of ox-LDL by macrophages, however, in intact
macrophages which produce their own NO, an additive effect between
endogenous NO and exogenous NO from SIN-1 or NaNP may lead to the
toxic effects showing up as stimulation of ox-LDL uptake by macrophages.

The rodent macrophages, and macrophage — derived J774 cells (31), as
well as human macrophages (32), express the inducible nitric oxide synthase
(NOS), which converts L-arginine to NO and citrulline (31, 32). The impaired
generation of the constitutive NOS (33, 34), or the increased inactivation of NO
(9) by ox-LDL, but not n-LDL in endothelial cells have been recently
demonstrated. Also the loading of murine macrophages with ox-LDL resulted
in a diminished release of NO, measured by the Griess reaction (35). Here we
have also observed a tendency of decreasing of NO generation by ox-LDL, but
not by n-LDL in macrophages stimulated with LPS.

We have shown that the decrease of endogenous NO biosynthesis by
L-NMMA results in an increase of intracellular accumulation of ox-LDL,

suggesting that endogenous NO protects macrophages against loading with
ox-LDL.
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The mechanism by which NO may participate in the regulation of ox-LDL
catabolism remains unknown. Lenten et al (36) demonstrated that LPS, which
is a potent activator of NO synthesis by macrophages (31, 32, 35) at
concentrations as low as 1ng/ml selectively prevents the expression of the
scavenger receptor activity, and inhibits the ox-LDL binding and accumulation
in human monocyte-macrophages. The concentration of LPS as high as
100 ng/ml completely prevented the uptake of ox-LDL but had no effect on
n-LDL binding, secretion of apoE, phagocytic activity, or the protein content
of monocyte-macrophages (36). In a similar way, Interferon-y (IFN-y), a known
activator of NO biosynthesis also in macrophages (37), was demonstrated to
inhibit the degradation of acetyl-LDL by mouse macrophages (38). The
authors (38) observed a slowing movement of internalised acetyl-LDL to the
lysosomes and the inhibition of the receptor recycling, which resulted in the
decrease in the expression of the scavenger receptors for acetyl-LDL on the cell
membrane of macrophages activated with IFN-y (38). On the other hand, both
LPS (39) and IF-y (37) induce the activation of protein kinase C (PKC), activity
of which is necessary for the expression of NOS in macrophages (37).

In other than macrophages cells such as human monocytic leukemic cell
line THP-1 and in the human hepatocarcinoma cell line Hep-G2, the
accumulation of cAMP as well as the stimulation of PKC resulted in an
increase in n-LDL binding and in increase in the cellular n-LDL receptor
mRNA (40, 41). The differences in the cell line, and in the receptor character
may explain heterogenity of cell behaviour since prostanoids, which
accumulate cAMP in macrophages (42, 43) also reduce the number of LDL
receptors and sterol synthesis in these cells (44, 45).

In contrast to the abundant information about the influence of adenylate
cyclase stimulators on the LDL catabolism in various cell types including
macrophages (18), there is hardly any literature available in this respect on
guanylate cyclase stimulators, such as endogenous NO or NO-donors (46).

cGMP interacts with three types of intracellular receptor proteins:
cGMP-dependent protein kinases, cGMP-regulated 1on channels, and
cGMP-regulated cyclic nucleotide phosphodiesterases (47). Recently it has been
suggested that both cAMP and cGMP are able to cross-activate other kinases
in tissues (48). Thus, it well can be that the accumulation of cGMP may promote
the cAMP function in macrophages, the effect observed in the synergistic
activity of PGI, and NO-donors on the inhibition of platelet function (46).

In our experimental model, when the endogenous biosynthesis of NO was
suppressed by a NOS inhibitor L-NMMA, SIN-1 decreased the accumulation
of ox-LDL by macrophages. However, when the endogenous formation of NO
was preserved, SIN-1 and NaNP activated the accumulation of ox-LDL by
macrophages. The biphasic effect of NO was described in several experimental
models. For example, NO depending on its concentration may inhibit or
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stimulate the release of noradrenaline from cardiac nerve endings (49), whereas
NO-donors may be either cytoprotective or cytotoxic for the granular cells of
the cerebellum and retina (50, 51) again depending on concentrations of
nitrovasodilators. An increase in the accumulation of n-LDL by human
lymphocytes in the presence of SIN-1 and NaNP at high concentrations has
also been reported (44) (our results prepared for publication).

Thus, NO or NO-donors at high concentrations seem to induce the adverse
effects in macrophages. The NO-mediated apoptosis of macrophages was demon-
strated to be prevented by L-NMMA (52), pointing that even in the cells which
generate NO, the toxic effect may be observed. In our experimental model the
increased accumulation of ox-LDL seems to be related to the stimulation of the
cellular cGMP levels, since on the contrary to SIN-1, the presence of NaNP in the
medium was not connected with the increase of the NO production measured by
the Griess reaction in the medium. NaNP belongs to the unique NO-donors, which
due to the presence of NO in their structure, immediately activates the cellular
guanylate-cyclase (46). The concentrations used in our experimental model were
rather high (comparing with the anti-platelet potency of this compound). Thus the
activation of ox-LDL accumulation observed at all concentrations used seems to
be related to the accumulation of cGMP. The inhibition of endogenous NO by
L-NMMA was sufficient to reverse the effect of this compound on ox-LDL
accumulation, that argues for the involvement of the cGMP activation, but not
the toxic effect on ox-LDL accumulation by macrophages by NO itself

We have not observed any additional effects of NO-donors on the ox-LDL
degradation by macrophages. The increased accumulation of ox-LDL was
followed by the parallel increase in the efflux of metabolised radioactive
proteins of ox-LDL from the cells, while the decreased catabolism followed the
decreased accumulation. Thus, we conclude that the removal of the
metabolised proteins of ox-LDL from macrophages does not seem to be
influenced by the investigated compounds.

We conclude that endogenous NO may play a role in preventing of
atherosclerosis not only as a platelet suppressor, but also as an inhibitor of the
ox-LDL accumulation by macrophages. Thereby, the formation of foam cells
may be hindered. In a negative feedback loop ox-LDL show a tendency to
impair the generation of endogenous NO by macrophages. NO-donors at low
concentrations are substitutes for endogenous NO and thus, they inhibit the
accumulation of ox-LDL by macrophages, whereas the overproduction of
endogenous NO or overdosage of NO-donors may produce a “paradoxic”
effect leading to the accumulation of ox-LDL by macrophages.
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