PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 15 | 4 |

Tytuł artykułu

Effect of endotoxins isolated from Desulfovibrio desulfuricans soil and intestinal strain on the secretion of TNF-alpha by human mononuclear cells

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Mononuclear cells play an important role in the regulation of microbe-induced inflammation, in part through their ability to secrete cytokines in response to microorganisms and their products. To evaluate the effects of Desulfovibrio desulfuricans-derived endotoxins on TNF-a induction, lipopolysaccharides (LPSs) isolated from soil and intestinal strain were used to stimulate peripheral blood mononuclear cells. The effect of these LPSs was assessed in comparison to that of LPSs from Escherichia coli, Salmonella minnesota and of lipid A from Salmonella minnesota. Level of TNF-a was measured by enzyme-linked immunosor­bent assay. D. desulfuricans LPSs at the highest dose (1000 ng/ml) displayed greater biological potency in inducing TNF-a secretion than other endotoxins used which indicates that these LPSs may act as a critical regulatory factor in bacteremia caused by these microorganisms.

Wydawca

-

Rocznik

Tom

15

Numer

4

Opis fizyczny

p.615-622,ref.

Twórcy

autor
  • Medical University of Silesia, Narcyzow 1, 41-200 Sosnowiec, Poland
autor

Bibliografia

  • 1. GIBSON G.R. Physiology and ecology of the sulphate re­ducing bacteria. J.Appl. Bacteriol. 69, 769, 1990.
  • 2. DEVEREUX R., HE S.-H., DOYLE C.L., ORKLAND S., STAHL D.A., LeGALL J., WHITMAN W.B. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J. Bacteriol. 172, 3609, 1990.
  • 3. WIDDEL F., PFENNING N. Dissimilatory sulfate- or sul­fur-reducing bacteria. In. Bergey's Manual of Systematic Bacteriology. Krieg N.R., Holt J.G (eds.). vol.1. Williams & Wilkins Co., Baltimore, pp 663-679, 1984.
  • 4. FUDE L., HARRIS B., URRUTIA M.M., BEVERIDGE T. J. Reduction of Cr(VI) by a consortium of sulfate-reducing bac­teria (SRB III). Appl. Environ. Microbiol. 60, 1525, 1994.
  • 5. BEERENS H., ROMOND C. Sulfate-reducing anaerobic bacteria in human faeces. Am. J. Clin. Nutr. 30, 1770, 1977.
  • 6. GIBSON G.R., MacFARLANE G.T., CUMMINGS J.H. Oc­currence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J. Appl. Bacteriol. 65, 103, 1988.
  • 7. DZIERŻEWICZ Z., GAWLIK B., CWALINA B., GON- CIARZ K., ZIÓŁKOWSKI G., GONCIARZ Z., WILCZOK T. Activity of sulphate reducing bacteria in the human diges­tive tract. Bull. Pol. Acad. Sci. Biol. 42, 171, 1994.
  • 8. FLORIN T.H.J., GIBSON G.R., NEALE G., CUMMINGS J.H. A role for sulphate-reducing bacteria in ulcerative coli­tis? Gastroenterology 98, A170, 1990.
  • 9. GIBSON G.R., CUMMINGS J.H., MacFARLANE G.T. Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol. Ecol. 86, 103, 1991.
  • 10. McDOUGALL R.J., ROBSON J., PATERSON D., TEE W. Bacteremia caused by a recently described novel Desulfovi­brio species. J. Clin. Microbiol. 35, 1805, 1997.
  • 11. TEE W., DYALL-SMITH M., WOODS W., EISEN D. Prob­able new species of Desulfovibrio isolated from a pyogenic liver abscess. J. Clin. Microbiol. 34, 1760, 1996.
  • 12. LOUBINOUX J., MORY F., PEREIRA I.A.C., LE FAOU A.E. Bacteremia caused by a strain of Desulfovibrio related to the provisionally named Desulfovibrio fairfieldensis. J. Clin. Microbiol. 38, 931, 2000.
  • 13. GOLDSTEIN E.J.C., CITRON D.M., PERAINO V.A., CROSS S.A. Desulfovibrio desulfuricans bacteremia and review of human Desulfovibrio infections. J. Clin. Micro­biol. 41, 2752, 2003.
  • 14. RIETSCHEL E.T., BRADE H., HOLST O., BRADE L. Bacte­rial endotoxin: Chemical constitution, biological recognition, host response and immunological detoxification. p. 40-81. In: Pathology shock. Rietschel E.T., Wagner H. (eds.). Springer­Verlag, Berlin-Heidelberg-New York, pp 40-81, 1996.
  • 15. ZHANG H., PETERSON J.W., NIESEL D.W., KLIMPEL G.R. Bacterial lipoprotein and LPS act synergistically to in­duce lethal shock and proinflammatory cytokine production. J. Immunol. 159, 4868, 1997.
  • 16. BEATY C.D., FRANKLIN T.L., UEHARA Y, WILSON C.B. Lipopolysaccharide-induced cytokine production in human monocytes: role of tyrosine phosphorylation in transmembrane signal transduction. Eur. J. Immunol. 24, 1278, 1994.
  • 17. DJEU J.Y., SERBOUSEK D., BLANCHRD K. Release of tumor necrosis factor by human polymorphonuclear leuko­cytes. Blood 76, 1405, 1990.
  • 18. JANSKY L., REYMANOVÂ P., KOPECKY J. Dynamics of cytokine production in human peripheral blood mono- nuclear cells stimulated by LPS or infected by Borrelia. Physiol. Res. 52, 593, 2003.
  • 19. BEUTLER B. TNF, immunity and inflammatory disease: lessons of the past decade. J. Invest. Med. 43, 227, 1995.
  • 20. NANCEY S., BIENVENU J., COFFIN B., ANDRE F., DES- COS L., FLOURIÉ B. Butyrate strongly inhibits in vitro stimu­lated release of cytokines in blood. Dig. Dis. Sci. 47, 921, 2002.
  • 21. SAËMANN M.D., BÖHMIG G.A., ÖSTERREICHER C.H., BURTSCHER H., PAROLINI O., DIAKOS C., STÖCKL J., HÖRL W.H., ZLABINGER G.J. Anti-inflammatory effects of sodium butyrate on human monocytes: Potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 14, 2380, 2000.
  • 22. ULMER A.J., FLAD H., RIETSCHEL T., MATTERN T. In­duction of proliferation and cytokine production in human T lymphocytes by lipopolysaccharide (LPS). Toxicology 152, 37, 2000
  • 23. PLOTZ S.G., LENTSCHT A., BEHRENDT H., PLOTZ W., HAMANN L., RING J., RIETSCHEL E.T., FLAD H., UL­MER A.J. The interaction of human peripheral blood eosin- ophils with bacterial lipopolysaccharide is CD14 dependent. Blood 97, 235, 2001.
  • 24. WRIGHT S.D., RAMOS R.A., TOBIAS P.S., ULEVITH R.J., MATHISON J.C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431, 1990.
  • 25. BEUTLER B., DU HOEBE K.X., ÜLEVITCH R.J. How we detect microbes and respond to them. The Toll-like receptors and their transducers. J. Leukoc. Biol. 74, 479, 2003.
  • 26. COUTURIER C., HAEFFNER-CAVAILLON N., CAROFF M., KAZATCHKINE M.D. Binding sites for endotoxins (li- popolysaccharides) on human monocytes. J. Immunol. 147, 1899, 1991.
  • 27. ROBERTSHAW H.J., BRENNAN F.M. Release of tumour necrosis factor a (TNFa) by TNFa cleaving enzyme (TACE) in response to septic stimuli in vitro. Br. J. Anaesth. 94, 222, 2005.
  • 28. VAN LEEUWEN H.J., VAN DER TOL M., VAN STRIJP J.A.G., VERHOEF J., VAN KESSEL K.P.M The role of tu­mour necrosis factor in the kinetics of lipopolysaccharide- mediated neutrophil priming in whole blood. Clin. Exp. Im­munol. 140, 65, 2005.
  • 29. ALLEN J.N., HERZYK D.J., WEWERS M.D. Human whole blood interleukin-1-beta production kinetics, cell source and comparison with TNF-alpha. J. Lab. Clin. Med. 119, 538, 1992.
  • 30. VAN DER POLL T., COYLE S.M., MOLDAWER L.L., LOWRY S.F. Changes in endotoxin-induced cytokine production by whole blood after in vivo exposure of normal humans to endotoxin. J. Infect. Dis. 174, 1356, 1996.
  • 31. MITOV I.G., KROPEC A., BENZING A., JUST H., GA- ROTTA G., GALANOS C., FREUDENBER G.M. Differ­ential cytokine production in stimulated blood cultures from intensive care patients with bacterial infections. Infect. 25, 206, 1997.
  • 32. KARAHASHI H., AMANO F. Structure-activity relation­ship of lipopolysaccharides (LPS) in tumor necrosis fac­tor (TNF-a) production and induction of macrophage cell death in the presence of cycloheximide (CHX) in a murine macrophage-like cell line J774. Biol. Pharm. Bull. 21, 1102, 1998.
  • 33. WĘGLARZ L., DZIERŻEWICZ Z., ORCHEL A., SZC­ZERBA J., JAWORSKA-KIK M., WILCZOK T. Biological activity of Desulfovibrio desulfuricans lipopolysaccharides evaluated via interleukin-8 secretion by Caco-2 cells. Scan. J. Gastroenterol. 38, 73, 2003.
  • 34. WĘGLARZ L., DZIERŻEWICZ Z., SKOP B., ORCHEL A. PARFINIEWICZ B., WIŚNIOWSKA B., ŚWIĄTKOWSKA L., WILCZOK T. Desulfovibrio desulfuricans lipopolysac­charides induce endothelial cell IL-6 and IL-8 secretion and E-selectin and VCAM-1 expression. Cell. Mol. Biol. Lett. 8, 991, 2003.
  • 35. DZIERŻEWICZ Z., CWALINA B., GAWLIK B., WILC­ZOK T. GONCIARZ Z. Isolation and evaluation of sus­ceptibility to sulphasalazine of Desulfovibrio desulfuricans strains from the human digestive tract. Acta Microbiol. Pol. 46, 175, 1997.
  • 36. POSTGATE J.R. The sulphate-reducing bacteria. 2nd ed., Cambridge University press, Cambridge, 1984.
  • 37. WESTPHAL O., LUDERITZ O., BISTER F. Bacterial strains and isolation of bacterial lipopolysaccharides. Z. Naturforsch. 78, 148, 1952.
  • 38. LAWDEN K.H., PITTS J.M., THOMAS J.A., LOWE C.R. Rational computeraided design of ligands that bind endo­toxin. In: Bacterial endotoxins: Lipopolysaccharides from genes to therapy. Levin J., Alving C.R., Munford R.S., Redl H. (eds.). Wiles-Liss, Inc. pp 443-452, 1995.
  • 39. BOYUM A. Separation of lymphocytes, granulocytes and monocytes from human blood using iodinated density gradi­ent media. In: Meth. Enzymol. Di Sabato G., Langone J.J., Van Vunakis H. (eds.). Academic Press, New York, London, vol. 108, 88, 1984.
  • 40. LEMAIRE L.C., VAN LANSCHOT J.J., STOUTENBEK C.P., VAN DEVENTER S.J., WELLS C.L. Bacterial trans­location in multiple organ failure: Cause or epiphenomenona still unproven. Br. J. Surg. 84, 1340, 1997.
  • 41. VAN DEVENTER J.H., BULLER H.R., TEN CATE J.W., STURK A., PAUW W. Endotoxaemia: an early predictor of septicemia in febrile patients. Lancet 1, 605, 1988.
  • 42. TROELSTRA A., ANTAL-SZALMAS P., DE GRAAF- MILTENBURG L.A.M., WEERSINK A.J.L., VERHOEF J., VAN KESSEL K.P.M., VAN STRIJP J.A.G. Saturable CD14- dependent binding of fluorescein-labeled lipopolysaccharide to human monocytes. Infect. Immun. 65, 2272, 1997.
  • 43. WEERSINK A.J.L., VAN KESSEL K.P.M., TORENSMA R., VAN STRIJP J.A.G., VERHOEF J. Binding of rough lipopolysaccharides (LPS) to human leukocytes. Inhibition by anti-LPS monoclonal antibodies. J. Immunol. 145, 318, 1990.
  • 44. CORRALES L.A.J., WEERSINK A.J.L., VERHOEF J., VAN KESSEL K.P.M. Serum-independent binding of lipo- polysaccharide to human monocytes is trypsin sensitive and does not involve CD14. Immunology 80, 84, 1993.
  • 45. HEUMANN D., GALLAY P., BARRAS C., ZAECH P., ULEVITCH R.J., TOBIAS P.S., GLAUSER M.-P., BAUMGARTNER J.D. Control of lipopolysaccharide (LPS) binding and LPS-induced tumor necrosis factor secretion in human peripheral blood monocytes. J. Immunol. 148, 3505, 1992.
  • 46. WARNER S.J.C., SAVAGE N., MITCHELL D. Character­istics of lipopolysaccharide interaction with human periph­eral-blood monocytes. Biochem. J. 232, 379, 1985.
  • 47. MUELLER M., BRANDENBURG K., DEDRICK R., SCHROMM A.B., SEYDEL U. Phospholipids inhibit li­popolysaccharide (LPS)-induced cell activation: a role for LPS-binding protein J. Immunol. 174, 1091, 2005
  • 48. WEIDEMANN B., BRADE H., RIETSCHEL E.T., DZIAR­SKI R., BAZIL V., KUSUMOTO S., FLAD H.D., ULMER A.J. Soluble peptidoglycan induced monokine production can be blocked by anti-CD14 monoclonal antibodies and by lipid A partial structures. Infect. Immun. 62, 4709, 1994
  • 49. AYBAY C., IMIR T. Comparison of the effects of Salmo­nella minnesota Re595 lipopolysaccharide, lipid A and mo- nophosphoryl lipid A on nitric oxide, TNF-a and IL-6 induc­tion from RAW 264.7 macrophages. FEMS Immunol. Med. Microbiol. 22, 263, 1998.
  • 50. MUOTIALA A., HALANDER I.M., PYHALA L., KO- SUNEN T., MORAN A.P. Low biological activity of He­licobacter pylori lipopolysaccharide. Infect. Immun. 60, 1714, 1992.
  • 51. GAYLARDE C.C., BEECH I.B. Short communication: Li- popolysaccharide composition of Desulfovibrio cell wall. World J. Microbiol. Biotechnol. 12, 113, 1996.
  • 52. LODOWSKA J., WOLNY D., JAWORSKA-KIK M., WĘGLARZ L., DZIERŻEWICZ Z, WILCZOK T. Com­position of the polysaccharide component of the endotoxin from the intestinal strain of Desulfovibrio desulfuricans. Ann. Pol. Chem. Soc. 2, 299, 2003.
  • 53. SMIRNOVA I., POLTORAK A., CHAN E.K.L., McBRIDE C., BEUTLER B. Phylogenetic variation and polymorphism at the toll-like receptor 4 locus (TLR4). Genome Biol. 1, 2001, 2000
  • 54. DZIERŻEWICZ Z., SZCZERBA J., WĘGLARZ L., ŚWIĄTKOWSKA L., JASIŃSKA D., WILCZOK T. Intra- species variability of Desulfovibrio desulfuricans strains determined by the genetic profiles. FEMS Lett. 219, 69, 2003
  • 55. DZIERŻEWICZ Z., SZCZERBA J., WĘGLARZ L., KO- MARSKA-SZOSTAK A., WILCZOK T. Evaluation of ar­bitrarily primed PCR for typing of Desulfovibrio desulfuri­cans strains. Microbiol. Res. 158, 173, 2003
  • 56. VAISHTEIN M., HIPPE H., KROPPENSTEDT R.M. Cel­lular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst. Appl. Microbiol. 15, 554, 1992
  • 57. DZIERŻEWICZ Z., CWALINA B., KURKIEWICZ S., CHODUREK E., WILCZOK T. Intraspecies variability of cellular fatty acids among soil and intestinal strains of Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 62, 33605,1996
  • 58. DZIERŻEWICZ Z., CWALINA B., JAWORSKA-KIK M., WĘGLARZ L., WILCZOK T. Susceptibility to antibiotics and biochemical properties of Desulfovibrio desulfuricans strains. Acta Pol. Pharm. 58, 439, 2001

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-7d1fd35b-1070-40a5-816b-f9f453ee61d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.