PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 47 | 3 |

Tytuł artykułu

The tube wall of Cambrian anabaritids

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Celestite/barite−replaced and phosphate−replicated tubes of Early Cambrian anabaritids from the northern part of the Siberian Platform (Anabar Shield) give new evidence on the wall−structure of these enigmatic fossils. The walls consist of fibres, interpreted as reflecting an original aragonitic fabric. Bundles of fibres are arranged in growth lamellae, and the latter form an angle of at least 45° with the inner tube wall. Where the outer tube surface projects into annular flanges, the lamellae have a chevron−like section due to the backwards deflection of the outer parts. Anabaritids are usually referred to the Cnidaria or left without systematic assignment, but earlier suggestions included affinity to the serpulid polychaetes. The chevron structure resembles that previously exclusively known from serpulids, but the presence of internal tooth−like structures in anabaritid tubes, perhaps compromising up−and−down movement through the tubes, continue to make a direct assignment to the Serpulida questionable.

Wydawca

-

Rocznik

Tom

47

Numer

3

Opis fizyczny

p.431-444,fig.

Twórcy

Bibliografia

  • Abaimova, G.P. 1978. Anabaritids – ancient fossils with carbonate skeleton [In Russian]. Trudy SNIIGGIMSa 260: 77–83.
  • Bengtson, S. 1994. The advent of animal skeletons. In: S. Bengtson (ed.), Early Life on Earth. Nobel Symposium 84, 412–425. Columbia University Press, New York, N.Y.
  • Bengtson, S., Conway Morris, S., Cooper, B.J., Jell, P.A., and Runnegar, B.N. 1990. Early Cambrian fossils from South Australia. Memoirs of the Association of Australasian Palaeontologists 9: 1–364.
  • Bokova, A.R. 1985. The oldest complex of organisms in the Cambrian of the western Anabar region [in Russian]. In: V.V. Khomentovskij, A.A. Terleev, and S.S. Bragin (eds.), Stratigrafiâ pozdnego dokembriâ i rannego kembriâ paleozoâ Sibiri, 13–28. Institut Geologii i Geofiziki SO AN SSSR, Novosibirsk.
  • Carter, J.G. (ed.) 1990a. Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, vol. 1. 832 pp. Van Nostrand Reinhold, New York, N.Y.
  • Carter, J.G. (ed.) 1990b. Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, vol. 2. 101 pp. Van Nostrand Reinhold, New York, N.Y.
  • Chang, L.L.Y., Howe, R.A., and Zussman, J. 1996. Non−silicates: Sulphates, Carbonates, Phosphates, Halides. 383 pp. Longman, Harlow, Essex.
  • Cherns, L. and Wright, V.P. 2000. Missing molluscs as evidence of large−scale, early skeletal aragonite dissolution in a Silurian sea. Geology 28: 791–794.
  • Clark, G.R., II 1976. Shell growth in the marine environment: approaches to the problem of marginal calcification.American Zoologist 16: 617–626.
  • Constantz, B.R. 1986. Coral skeleton construction: a physiochemically dominated process. Palaios 1: 152–157.
  • Conway Morris, S. and Chen M. 1989. Lower Cambrian anabaritids from South China. Geological Magazine 126: 615–632.
  • Dodd, J.R. 1966. Processes of conversion from aragonite to calcite with examples from the Cretaceous of Texas. Journal of Sedimentary Petrology 36: 733–741.
  • Fedonkin, M.A. 1986. Precambrian problematic animals: Their body plan and phylogeny. In: A. Hoffman and M.H. Nitecki (eds.), Problematic Fossil Taxa, 59–67. Oxford U.P., New York, N.Y.
  • Fedonkin, M.A. 1987. The non−skeletal fauna of the Vendian and its place in the evolution of the Metazoa [in Russian]. Trudy Paleontologičeskogo Instituta AN SSSR 226: 1–174.
  • Glaessner, M.F. 1976. Early Phanerozoic annelid worms and their geological and biological significance. Journal of the Geological Society of London 132: 259–275.
  • Hedley, R.H. 1958. Tube formation by Pomatoceros triqueter (Polychaeta). Journal of the Marine Biological Association of the UnitedKingdom 37: 315–322.
  • James, N.P. 1974. Diagenesis of scleractinian corals in the subaerial vadose environment. Journal of Paleontology 48: 785–799.
  • James, N.P. and Klappa, C.F. 1983. Petrogenesis of Early Cambrian reef limestones, Labrador, Canada. Journal of Sedimentary Petrology 53: 1051–1096.
  • Kirschvink, J.L. and Hagadorn, J.W. 2000. A Grand Unified Theory of biomineralization. In: E. Bäuerlein (ed.), Biomineralization, 139–150. Wiley−VCH, Weinheim.
  • Kouchinsky, A., Bengtson, S., and Gershwin, L.−a. 1999. Cnidarian−like embryos associated with the first shelly fossils in Siberia. Geology 27 (7): 609–612.
  • Land, L.S. 1967. Diagenesis of skeletal carbonates. Journal of Sedimentary Petrology 37: 914–930.
  • Lowenstam, H.A. and Margulis, L. 1980. Evolutionary prerequisites for early Phanerozoic calcareous skeletons. Biosystems 12: 27–41.
  • Lowenstam, H.A. and Weiner, S. 1989. On Biomineralization. 324 pp. Oxford University Press, New York.
  • Lucas, J. and Prévôt, L.E. 1991. Phosphates and fossil preservation. In: P.A. Allison and D.E.G. Briggs (eds.), Topics in Geobiology, vol. 9: Taphonomy—Releasing the Data Lockedin the Fossil Record, 389–409. Plenum, New York.
  • Maliva, R.G. 1998. Skeletal aragonite neomorphism—quantitative modelling of a two−water diagenetic system. Sedimentary Geology 121 (3–4): 179–190.
  • Maliva, R.G. and Siever, R. 1988. Diagenetic replacement controlled by force of crystallization. Geology 16: 688–691.
  • Maliva, R.G. and Dickson, J.A.D. 1992. The mechanism of skeletal aragonite neomorphism: evidence from neomorphosed mollusks from the upper Purbeck Formation (Late Jurassic–Early Cretaceous), southern England. Sedimentary Geology 76: 221–232.
  • Matthews, S.C. and Missarzhevsky, V.V. 1975. Small shelly fossils of late Precambrian and early Cambrian age: a review of recent work. Journal of the Geological Society 131: 289–304.
  • Missarzhevskij, V.V. [Missarževskij, V.V.] 1974. New data on the oldest Lower Cambrian fossils of the Siberian Platform [in Russian]. In: I.T. Žuravleva and A.Û. Rozanov (eds.), Biostratigrafiâ i paleontologiâ nižnego kembriâ Evropy i severnoj Azii, 179–189. Nauka, Moskva.
  • Missarzhevskij, V.V. [Missarževskij, V.V.] 1989. The oldest skeletal fossils and stratigraphy of the Precambrian–Cambrian boundary beds [in Russian]. Trudy Geologičeskogo Instituta AN SSSR 443: 1–237.
  • Missarzhevskij, V.V. [Missarževskij, V.V.] and Mambetov, A.M. 1981. Stratigraphy and fauna of the Precambrian–Cambrian boundary beds in Malyj Karatau [in Russian]. Trudy Geologičeskogo Instituta AN SSSR 326: 1–92.
  • Neff, J.M. 1971. Ultrastructural studies of the secretion of calcium carbonate by the serpulid polychaete worm, Pomatoceros caeruleus. Zeitschrift für Zellforschung 120: 160–186.
  • Qian Y. 1977. Hyolitha and some problematica from the Lower Cambrian Meishucunian Stage in central and southwestern China [in Chinese]. Acta Palaeontologica Sinica 16: 255–275.
  • Rozanov, A.Y., Missarzhevskij, V.V., Volkova, N.A., Voronova, L.G., Krylov, I.N., Keller, B.M., Korolyuk, I.K., Lendzion, K., Michniak, R., Pykhova, N.G., and Sidorov, A.D. 1969. The Tommotian Stage and the problem of the lower boundary of the Cambrian [in Russian]. Trudy Geologičeskogo Instituta AN SSSR 206: 1–380.
  • Runnegar, B. 1985. Shell microstructures of Cambrian molluscs replicated by phosphate. Alcheringa 9: 245–257.
  • Runnegar, B. 1989. The evolution of mineral skeletons. In: R.E. Crick (ed.), Origin, Evolution, andModern Aspects of Biomineralization in Plants and Animals, 75–94. Plenum, New York, N.Y.
  • Towe, K.M., Bengtson, S., Fedonkin, M.A., Hofmann, H.J., Mankiewicz, C., and Runnegar, B. 1992. Described taxa of Proterozoic and selected earliest Cambrian carbonaceous remains, trace and body fossils. In: J.W. Schopf and C. Klein (eds.), The Proterozoic Biosphere: A Multidisciplinary Study, 953–1054. Cambridge U.P., Cambridge.
  • Val’kov, A.K. 1975. Biostratigrafiâ i hiolity kembriâ severo−vostoka Sibirskoj platformy. 139 pp. Nauka, Moskva.
  • Val’kov, A.K. 1982. Biostratigrafiâ nižnego kembriâ vostoka Sibirskoj platformy. 91 pp. Nauka, Moskva.
  • Val’kov, A.K. and Sysoev, V.A. 1970. Cambrian angustiochreids from Siberia [in Russian]. In: A.K. Bobrov (ed.), Stratigrafiâ i paleontologiâ proterozoâ i kembriâ vostoka Sibirskoj platformy, 94–100. Âkutskoe Knižnoe Izdatel’stvo, Âkutsk.
  • Voronova, L.G. and Missarzhevskij, V.V. 1969. Finds of algae and worm tubes in the Precambrian–Cambrian boundary beds in the northern part of the Siberian Platform [in Russian]. Doklady AN SSSR 184 (1): 207–210.
  • Weedon, M.J. 1990. Shell structure and affinity of vermiform “gastropods”. Lethaia 23: 297–309.
  • Weedon, M.J. 1991. Microstructure and affinity of the enigmatic Devonian tubular fossil Trypanopora. Lethaia 24: 227–234.
  • Weedon, M.J. 1994. Tube microstructure of Recent and Jurassic serpulid polychaetes and the question of the Palaeozoic ‘spirorbids’. Acta Palaeontologica Polonica 39: 1–15.
  • Yermolaev, N.P., Sozinov, N.A., Kotina, R.P., Pashkova, E.A., and Goryachin, N.I. 1999. Concentration Mechanisms of Noble Metals in Terrigenous–Carbonaceous Deposits. 124 pp. Scientific World, Moscow.
  • Yue Z. and Bengtson, S. 1999. Embryonic and post−embryonic development of the Early Cambrian cnidarian Olivooides. Lethaia 32: 181–195.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-79192c97-acb9-4370-ac47-a17ea7626f7d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.