PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 13 | 5 |

Tytuł artykułu

Cytoplasmatic bacterial membrane responses to environmental perturbations

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bacteria can adapt to various environmental factors such as temperature, pressure, ions, nutrients and toxic substances by modifying their membranes to maintain them in a fluid state. These modifications within the cytoplasmatic membrane particularly result from changes in the fatty acid composition and interaction between proteins and lipids. Fatty acids, mainly phospholipid fatty acids, play a role as a good biomarker of changes of physiological status of microorganisms caused by external factors. A greater understanding of the detailed physiological mechanisms of bacterial membrane lipid adaptation, especially to toxic substances and solvents, are important for researchers who use bacteria in bioremediation and biotransformation processes.

Wydawca

-

Rocznik

Tom

13

Numer

5

Opis fizyczny

p.487-494,fig.,ref.

Twórcy

autor
  • University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
autor

Bibliografia

  • 1. WEBER F.J., DE BONT J.A.M. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim. Biophys. Acta, 1286, 225, 1996.
  • 2. RAMOS J.L., GALLEGOS M.T., MARQUES S., RAMOS- GONZALES M.I., ESPINOSA-URGEL M., SEGURA A. Responses of Gram-negative bacteria to certain environ­mental stressors. Curr. Opin. Microbiol. 4, 166, 2001.
  • 3. SAJBIDOR J. Effect of some environmental factors on the content and composition of microbial membrane lipids. Crit. Rev. Biotechnol. 17, 87, 1997.
  • 4. SINGER S.J., NICOLSON G.L. The fluid mosaic model of the structure of cell membranes. Science, 175, 720, 1972.
  • 5. SINGER S.J. The molecular organization of membranes. Ann. Rev. Biochem. 43, 805, 1974.
  • 6. FINEAN J.B., COLEMAN R., MICHELL R.H. Membranes and their cellular functions. Blackwell, Oxford, 1978.
  • 7. FINNE G., MATCHES J.R. Spin-labelling studies on the lipids of psychrophilic and psychrotrophic, and mesophilic Clostridia. J. Bacteriol. 125, 211, 1976.
  • 8. FINEAN J.B., MICHELL R.H. Isolation, composition and gen­eral structure of membranes. (in) Membrane structure. (eds. J.B Finean., R.H Mitchell), Elsevier, New York, pp 19-25, 1981.
  • 9. MROZIK A., PIOTROWSKA-SEGET Z., LABUZEK S. Fatty acids of bacterial membranes as a biomarker of aromatic compounds toxicity (in Polish). Post. Mikrobiol. 41(2), 185, 2002.
  • 10. DENICH T.J. BEAUDETTE L.A., LEE H., TREVORS J.T. Effect of selected environmental and physicochemical factors on bacterial cytoplasmatic membranes. J. Microbiol. Meth. 52, 149, 2003.
  • 11. JAIN M.K. Introduction to biological membranes. Wiley, New York, 1988.
  • 12. GENNIS R.B. Biomembranes, molecular structure and function. Springer, New York, 1989.
  • 13. SINENSKY M. Homeoviscous adaptation: a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA, 71, 522, 1974.
  • 14. CULLIS P.S., HOPE M.J., DE KRUIJFF B., VERKLEIJ A.J., TILCOCK C.P.S. Structural properties and functional roles of phospholipids in biological membranes (in) Phos­pholipids and cellular regulations. (ed. J.F Kuo), CRC Press, Boca Raton, pp 1-60, 1985.
  • 15. TRAUBLE H. The movement of molecules across lipid mem­branes: a molecular theory. J. Membr. Biol. 4, 193, 1971.
  • 16. GRUNER S.M., CULLIS P.R., HOPE M.J., TILCOCK C.P.S. Lipid polymorphism: the molecular basis of nonbilayer phases. Annu. Rev. Biophys. Chem. 14, 211, 1985.
  • 17. KEWELOH H., DIEFENBACH R., REHM H.J. Increase of phenol tolerance of Escherichia coli by alterations of fatty acid composition of the membrane lipids. Arch. Microbiol. 157, 49, 1991.
  • 18. MENDELSOHN R., DAVIES M.A., BRAUNER J.W., SCHUSTER H.F., DLUHY R.A. Quantitative determination of conformational disorder in the acyl chains of phospholipid bilayers by infrared spectroscopy. Biochemistry, 28, 8934, 1989.
  • 19. HAZEL J.R., WILLIAMS E.E. The role of alterations in membrane lipid composition in enabling physiological ad­aptation of organisms to their physical environment. Prog. Lipid Res. 29, 167, 1990.
  • 20. DE KRUIJFF B. Lipid polymorphism and biomembrane function. Curr. Opin. Chem. Biol. 1, 564, 1997.
  • 21. SPEROTTO M.M., ISPEN J.H., MOURITSEN O.G. Theory of protein-induced lateral phase separation in lipid membranes. Cell Biophys. 14, 79, 1989.
  • 22. FREEDMAN R.B. Membrane bound enzymes. New com­prehensive biochemistry. (in) Membrane structure. (eds. J.B Finean., R.H Mitchell), Elsevier, New York, pp 175-181, 1981.
  • 23. RUSSEL N.J. Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem. Sci. 9, 108, 1984.
  • 24. DIEFENBACH R., HEIPIEPER H.J., KEWELOH H. The conversion of cis into trans insaturated fatty acids in Pseudo­monas putida P8: evidence for a role in the regulation of mem­brane fluidity. Appl. Microbiol. Biotechnol. 38, 382, 1992.
  • 25. OKUYAMA H., OKAJIMA N., SASAKI S., HIGASHI S., MURATA N. The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in am­bient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1. Biochim. Biophys. Acta, 1084, 13, 1991.
  • 26. HEIPIEPER H.J., WEBER F.J., SIKKEMA J., KEWELOH H., DE BONT J.A.M. Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 12, 409, 1994.
  • 27. EZE M.O., MCELHANEY R.N. The effect of alterations in the fluidity and phase state of the membrane lipids on the passive permeation and facilitated diffusion of glycerol in Escherichia coli. J. Gen. Microbiol. 124, 299, 1981.
  • 28. RUSSEL N.J., FUKUNAGA N. A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol. Rev. 75, 171, 1990.
  • 29. QUINN P.J. The fluidity of cell membranes and its regula­tion. Prog. Biophys. Mol. Biol. 38, 1, 1981.
  • 30. HASEGAWA Y, KAWADA N., NOSOHY Change in chemical composition of membrane of Bacillus caldotenax after shifting the growth temperature. Arch. Microbiol. 126, 103, 1980.
  • 31. ROSAS S.B., DEL CARMEN SECCO M., GHITTONI N.E. Effects of pesticides on the fattycid and phospholipid composition of Escherichia coli. Appl. Environ. Microbiol. 40, 231,1980.
  • 32. MARGESIN R., SCHINNER F. Properties of cold-adapted microorganisms and their potential role in biotechnology. J. Biotechnol. 33, 1, 1994.
  • 33. THIERINGER H.A., JONES P.A., INOUYE M. Cold shock and adaptation. BioEssays, 20, 49, 1998.
  • 34. RUSSEL N.J. Cold adaptation of microorganisms. Phil. Trans. R. Soc. London., B 326, pp 595-611, 1990.
  • 35. RUSSEL N.J. Psychrophilic microorganisms. (in) Molecu­lar biology and biotechnology of extremophiles. (eds. R.A Herber, R.J Sharp), Blackie, Glasgow, pp 203-224. 1992.
  • 36. CRONAN JR., J.E., VAGELOS P.R. Metabolism and func­tion of the membrane phospholipids of Escherichia coli. Biochim. Biophys. Acta, 265, 25, 1972.
  • 37. HENDERSON R.J., MILLAR R.M., SARGENT J.R., JOS­TENSEN J.P. Trans-monoenoic and polyunsaturated fatty acids in phospholipids of a Vibrio species of bacterium in relation to growth conditions. Lipids, 28, 389, 1993.
  • 38. SUUTARI M., LAAKSO S. Changes in fatty acid branching and unsaturation of Streptomyces griseus and Brevibacterium fermentans as a response to growth temperature. Appl. Environ. Microbiol. 58, 2338, 1992.
  • 39. SUUTARI M., LAAKSO S. Unsaturated and branched chain-fatty acids in temperature adaptation of Bacillus subtillis and Bacillus megaterium. Biochim. Biophys. Acta, 1126, 119, 1992.
  • 40. SMELT J.P.P.M., RIJKE A.G.F., HAYHURST A. Possible mechanism of high-pressure inactivation of microorgan­isms. High Press. Res. 12, 199, 1994.
  • 41. BRAGANZA L.F., WORCESTER D.L. Structural changes in lipid bilayers and biological membranes caused by hydro­static pressure. Biochemistry, 25, 7484, 1986.
  • 42. ALLEN E.E., FACCIOTTI D., BARLET D.H. Monoun- saturated but not polyunsaturated fatty acids are required for growth at a high pressure and low temperature in deep-sea bacterium Photobacterium profundum strain SS9. Appl. En­viron. Microbiol. 65, 1710, 1999.
  • 43. FANG J., BARCELONA M.J., NOGI Y., KATO C. Bio­chemical implications and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Marianas Trench at 11.000. Deep-Sea Res. I 47, 1173, 2000.
  • 44. BARLET D.H. Pressure effects in vivo microbial processes. Biochim. Biophys. Acta, 1595, 367, 2002.
  • 45. JOHNS R.B., PERRY G.J. Lipids of the marine bacterium Flexibacter polymorphus. Arch. Microbiol. 114, 267, 1977.
  • 46. YANO Y., NAKAYAMA A., ISHIHARA K., SATO H. Ad­aptative changes in membrane lipids of barophilic bacteria in response to changes in growth pressure. Appl. Environ. Microbiol. 64, 479, 1998.
  • 47. DE LONG E.F., YAYANOS A.A. Adaptation of the mem­brane lipids of a deep-sea bacterium to changes in hydro­static pressure. Science, 228, 1101, 1985.
  • 48. MARSH D. Handbook of lipid bilayers. CRC Press, Boca Raton, pp 211-225, 1998.
  • 49. BOYAVAL P., BOYAVAL E., DESMAZEAUD M.J. Sur­vival of Brevibacterium linens during nutrient starvation and intracellular changes. Arch. Microbiol. 141, 128, 1985.
  • 50. MARTINS L.O., JURADO A.S., MADEIRA V.M.C. Com­position of polar lipid acyl chains of Bacillus stearother- mophilus as affected by temperature and calcium. Biochim.Biophys. Acta, 1045, 17, 1990.
  • 51. LUXO C., JURADO A.S., MADEIRA V.M.C. Lipid com­position changes induced by tamoxifen in a bacterial model system. Biochim. Biophys. Acta, 1369, 71, 1998.
  • 52. INOUE A., YAMANOTO K., HORIKOSHI K. Pseudomo­nas putida which can grow in the presence of toluene. Appl. Environ. Microbiol. 57, 1560, 1991.
  • 53. IVANOV I.T., BOYTCHEVA S., MIHAILOVA G. Parallel study of thermal resistance and permeability barrier stabil­ity of Enterococcus faecalis as affected by salt composition, growth temperature and pre-incubation temperature. J. Therm. Biol. 24, 217, 1999.
  • 54. VAN DE VOSSENBERG J.L.C.M., DRIESSEN A.J.M., GRANT W.D., KONINGS W.N. Lipid membranes from halophilic and alkalihalophilic Archaea have low H+ and Na+ permeability at high salt concentration. Extremophiles, 253, 1999.
  • 55. CHIHIB N.E., RIBEIRO DA SALVA M., DELATTRE G., LAROCHE M., FEDERIGHI M. Different cellular fatty acid pattern behaviours of two strains of Listeria monocytogenes Scott A and CNL 895807 under different temperature and salinity conditions. FEMS Microbiol. Lett. 218, 155, 2003.
  • 56. SAKAMOTO T., MURATA N. Regulation of the desatura­tion of fatty acids and its role in tolerance to cold and salt stress. Curr. Opin. Microbiol. 5, 208, 2002.
  • 57. SIKKEMA J., DE BONT J.A.M., POOLMAN B. Mecha­nisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59, 201, 1995.
  • 58. JANA T.K, SRIVASTOVA A.K, CSERY K, ARORA D.K. Influence of growth and environmental conditions on cell surface hydrophobicity of Pseudomonas fluorescens in non­specific adhesion. Can. J. Microbiol. 46, 28, 2000.
  • 59. NICHOLS D.S., NICHOLS P.D., RUSSEL N.J., DAVIES N.W., MCMEEKIN T.A. Polyunsaturated fatty acids in the psychrophilic bacterium Shevanella gelidimarina ACAM 456T: molecular species analysis of major phospholipids and biosynthesis of eicasapentaenoic acid. Bioch. Biophys. Acta, 1347, 164, 1997.
  • 60. KIM I.S., LEE H., TREVORS J.T. Effects of 2, 2', 5, 5'-tetra- chlorobiphenyl and biphenyl on cell membranes of Ralstonia eutropha H850. FEMS Microbiol. Lett. 200, 17, 2001.
  • 61. NICHOLS D.S., RUSSEL N.J. Fatty acid adaptation in an Antarctic bacterium - changes in primer utilization. Micro­biology, 142, 747, 1996.
  • 62. RUSSEL N.J. Psychrophilic bacteria - molecular adapta­tions of membrane lipids. Com. Biochem. Physiol. 118A, 489, 1997.
  • 63. HEIPIEPER H.J., LOFFELD B., KEWELOH H., DE BONT J.A.M. The cis/trans isomerisation of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due in to organic compounds. Chemoshpere, 30, 1041, 1995.
  • 64. RAJENDRAN N., MATSUDA O., IMAMURA N., URISH- IGAWA Y. Variation of microbial biomass and community structure in sediments of eutrophic bays as determined by phospholipid ester-linked fatty acids. Appl. Environ. Micro­biol. 58, 562, 1992.
  • 65. GUCKERT J.B., HOOD M.A., WHITE D.C. Phospholipid ester-linked fatty acid profiles changes during nutrient de­privation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl. Environ. Microbiol. 52, 794, 1986.
  • 66. GUCKERT J.B., RINGELBERG D.B., WHITE D.C. Bio­synthesis of trans fatty acids from acetate in the bacterium Pseudomonas atlantica. Can. J. Microbiol. 33, 748, 1987.
  • 67. SIKKEMA J., WEBER F.J., HEIPIEPER H.J., DE BONT J.A.M. Cellular toxicity of lipophilic compounds: mechanisms, implications, and adaptations. Biocatalysis, 10, 113, 1994.
  • 68. INGRAM L.O. Adaptation of membrane lipids to alcohols. J. Bacteriol. 125, 670, 1976.
  • 69. CORNELL B.A., SEPAROVIC F. Membrane thickness and acyl chain length. Biochim. Biophys. Acta, 733, 189, 1983
  • 70. ROTTENBERG H. Probing the interactions of alcohols with biological membranes with the fluorescent probe Pro­dan. Biochemistry, 31, 9473, 1992.
  • 71. INGRAM L.O. Microbial tolerance to alcohols: role of the cell membrane. Trends Biotechnol. 4, 40, 1986.
  • 72. MCINTOSH T.J., SIMON S.A., MACDONALD R.C. The organization of n-alkanes in lipid bilayers. Biochim. Bio­phys. Acta, 597, 445, 1980.
  • 73. TSITKO I.V., ZAJTSEV G. M., LOBANOK A.G., SALKINOJA-SALONEN M.S. Effect of aromatic com­pounds on cellular fatty acid composition of Rhodococcus opacus. Appl. Environ. Microbiol. 65, 853, 1999.
  • 74. GUTIERREZ J.A., NICHOLS P., COUPERWHITE I. Changes in whole cell-derived fatty acids induced by benzne and occurrence of the unusual 16:1i»6c in Rhodococcus sp. 33. FEMS Microbiol. Lett. 176, 213, 1999.
  • 75. RHEE S.K., LEE G.M., KIM Y.B., LEE S.T. Effect of pyri­dine on fatty acid composition of Pimelobacter sp. FEMS Microbiol. Lett. 141, 139, 1996.
  • 76. DIEFENBACH R., KEWELOH H. Synthesis of trans un- saturated fatty acids in Pseudomonas putida P8 by direct isomerization of the double bond of lipids. Arch. Microbiol. 162, 120, 1994.
  • 77. HEIPIEPER H.J., DIEFENBACH R., KEWELOH H. Con­version of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseu­domonas putida P8 from substrate toxicity. Appl. Environ. Microbiol. 58, 1847, 1992.
  • 78. HEIPIEPER H.J., DE BONT J.A.M. Adaptation of Pseudo­monas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl. Environ. Microbiol. 60, 4440, 1994.
  • 79. GROGAN D.W., CRONAN J.E. Characterization of Escherichia coli mutants completely detective in synthesis of cyclopropane fatty acids. J. Bacteriol. 166, 872, 1986.
  • 80. TOROK Z., HORVATH I., GOLOUBINOFF P., KOVACS E., GLATZ A., BALOGH G., VIGH L. Evidence for a lipochaperonin: association of active protein - folding GroESL oligomers with lipids can stabilize membranes under heat shock condi­tions. Proc. Natl. Acad. Sci. USA, 94, 2192, 1997.
  • 81. CLEMENTS M. O., FOSTER S. J. Starvation recovery of Staphylococcus aureus 8325-4. Microbiology, 144, 1755, 1998.
  • 82. KEWELOH H., WEYRAUH G., REHM H.J. Phenol - in­duced membrane changes in free and immobilized Escherichia coli. Appl. Environ. Biotechnol. 33, 66, 1990.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-71e428fb-315f-40c8-b850-3c8f5af739d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.