PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 23 | 2 |

Tytuł artykułu

Effects of water stress on light and dark respirations in two maize [Zea mays L.] varieties

Warianty tytułu

PL
Wplyw stresu wodnego na respiracje dwoch odmian kukurydzy [Zea mays L.] przebiegajaca w swietle i w ciemnosci

Języki publikacji

EN

Abstrakty

EN
Water stress as the one of the important limiting factors in plant growth was applied with polyethylene glycol (PEG) 6000 in solutions of 10, 20, 30 and 40% strengths that achieve water deficit levels of -0.15, -0.49, -1.03 and -1.76 MPa, respectively. After 24 hours treatment, the roots and leaves respirations of two maize (Zea mays L.) cultivars – 704 and 301 – were determined in various concentrations of PEG 6000 in light and dark conditions. Respiration rate declined in leaves and roots with increasing PEG concentrations. Decreases of oxygen uptake in roots and leaves of 704 variety were significantly (p < 0.01) higher than 301 variety and in light conditions were significantly (p < 0.01) higher than in dark. The rate of respiration in the light was lower than in darkness and the decrease of oxygen uptake in water stress in dark conditions was lower than in light.
PL
Stres wodny jest jednym z najważniejszych czynników ograniczających wzrost roślin. W doświadczeniu zastosowano 10-, 20-, 30- i 40-procentowy roztwór glikolu polietylenowego (PEG) 6000, co pozwoliło osiągnąć warunki niedoboru wody na poziomie odpowiednio -0.15; -0.49; -1,03 i -1.76 MPa. Po upływie 24 godzin określono szybkość oddychania w korzeniach i liściach dwóch odmian kukurydzy (Zea mays L.) – 704 i 301 w różnych stężeniach PEG 6000, w świetle i w ciemności. Intensywność oddychania w liściach i korzeniach spadała wraz ze wzrostem stężenia PEG. Spadek poboru tlenu był istotnie (p < 0,01) wyższy w korzeniach i liściach odmiany 704 oraz w warunkach dostępu światła. Szybkość respiracji była mniejsza w świetle niż w ciemności, a spadek poboru tlenu w warunkach stresu wodnego niższy w ciemności niż przy dostępie światła.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

2

Opis fizyczny

p.374-386,fig.,ref.

Twórcy

  • Urmia University, Urmia, Iran
autor

Bibliografia

  • ATKIN O.W., WESTBEEK M.H.M., CAMBRIDGE M.L., LAMBERS H., PONS T.L. 1997. Leaf respiration in light and darkness. Plant Physiology, 113: 961-965.
  • AZCON-BIETO J., OSMOND C.B. 1983. Relationship between photosynthesis and respiration. The effect of carbohydrate status on respiratory rates and the involvement of the alternative pathway in the leaf respiration. Plant Physiology, 72: 598-603.
  • AZCON-BIETO J., GONZALEZ-MEHLER M.A., DOHERTY W., DRAKE B.G. 1994. Accumulation of respiratory O₂ uptake in green tissues of field-grown native species after long-term exposure to elevated atmospheric CO₂. Plant Physiology, 106: 1163-1168.
  • BARTOLI C.G., GOMEZ F., MARTINEZ D.E., GUIAMET J.J., 2004. Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J. Exp. Bot, 55: 1663-1669.
  • BOYER J.S. 1982. Plant productivity and environment. Science, 218: 443-448.
  • BROOKS A., FARQUHAR G.D. 1985. Effect of temprature on the CO₂/O₂ specificity of ribulose-1, 5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light – estimate from gas-exchange measurements on spinach. Planta, 165: 397-406.
  • BURLYN E., MIRRILL R. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol, 51: 914-916.
  • CANVIN D.T., BERRY J.A., BADGER M.R., FECK H., OSMOND C.B. 1980. Oxygen exchange in leaves in the light. Plant Physiology, 66: 302-307.
  • DELIEU T., WALKER D.A. 1981. Polarografic measurement of photosynthetic oxygen evolution by leaf discs. New Phytology, 89: 165-178.
  • FLEXAS J., GALMES J., RIBAS-CARBO M., MEDRANO H. 2005. The effects of drought in plant respiration, Advances in photosynthesis and respiration. [In:] Advances in photosynthesis and respiration. Plant respiration: from cell to ecosystem. Eds. Lambers H., Ribas-Carbo M. Springer, Dordrecht, 18(18): 117-194.
  • GHASHGHAIRE J., DURANCEAU M., BADECK F.W., CORNIC G., ADELINE M.T., DELEENS E. 2001. δ13 of CO₂ respired in the dark in relation to of leaf metabolites: comparison between Nicotiana sylvestris and Helianthus annuus under drought. Plant Cell and Environment, 24: 505-512.
  • GONZALEZ-MELER M.A., MATAMALA R., PENUELAS J., 1997, Effects of prolonged drought stress and nitrogen deficiency on respiratory O₂ uptake of bean and pepper leaves. Photosynthetica, 34: 505-512.
  • HAUPT-HERTING S., KLUG K., FOCK H.P. 2001. A new approach to measure gross CO₂ fluxes in leaves. Gross CO₂ assimilation, photo respiration and mitochondrial respiration in the light in tomato under drought stress. Plant Physiology, 126: 388-396.
  • HURRY V., IGAMBERDIEV A.U., KEERBERG O., PARNIK T., ATKIN O.K., ZARAGOZA-CASTELLS J., GARDESTROM P. 2005. Respiration in photosynthetic cells: gas exchange components, interactions with photorespiration and the operation of mitochondria in the light. [In:] Plant respiration: from cell to ecosystem. Eds. Lambers H., Ribas-Carbo M., Springer, Dordrecht, pp. 43-61.
  • JOHN K., JAMES M. 1970. The influence of mitochondrial concentration and storage on the respiratory control of isolated plant mitochondria. Plant Physiol, 45: 382-385.
  • KOWALLIK W. 1982. Blue light effects on respiration. Annual Review of Plant Physiology, 33: 51-72.
  • KROMER S. 1995. Respiration during photosynthesis. Annual Review of Plant Physiology, 46: 45-70.
  • LAMBERS H., CHAPIN III F.C., PONS T.L. 1998. Respone of photosynthesis to light. [In:] Plant physiological ecology. Eds. H. Lambers, F.S. Chapin III, T.L. Pons, Springer Verlag, New York, pp. 25-46.
  • LAWLOR D.W. 1976. Water stress induced changes in photosynthesis, photo respiration, respiration and CO₂ compensation concentration in wheat. Photosynthetica, 10: 378-387.
  • LEVITT J. 1980. Response of plants environmental stress. Academic Press, New York.
  • LOBODA T. 1993. Gas exchange of different spring cereal genotypes under normal and drought conditions. Photosynthetica, 29: 567-572.
  • NICHOLAS P. 1989. Osmotic pressure of aqueous polyethylene glycols. Plant Physiol., 91: 766-769.
  • PINELLI P., LORETO F. 2003. (CO₂)-C¹² emission from different metabolic pathways measured in illuminated and darkened C₃ and C₄ leaves at low, atmospheric and elevated CO₂ concentration. Journal of Experimental Botany, 54: 1761-1769.
  • RIBAS-CARBO M., ROBINSON S.A., GONZALEZ-MELER M.A., LENNON A.M., GILES L., SIEDOW J.N., BERRY J.A. 2000. Effects of light on respiration and oxygen isotope fractionation in soybean cotyledons. Plant Cell and Environment, 23: 983-989.
  • SGHERRI C.L.M., PINZINO C., NAVARI-IZZO F. 1993, Chemical changes and O₂ production in thylakoid membranes under water stress. Physiol. Plant, 87: 211-216.
  • SGHERRI C.L.M., NAVARI-IZZO F. 1995. Sunflower seedlings subjected to increasing water deficit stress: oxidative stress and defence mechanisms. Physiol. Plant, 93: 25-30.
  • SHEARMANN L.L., ESATIN J.D., SULLIVAN C.Y., KINBACHER E.J. 1972. Carbon dioxide exchange in water-stressed maize sorghum. Crop. Sci, 12: 406-409.
  • STEUTER A., MOZAFAR A., GOODIN J. 1981. Water potential of aqueous polyethylene glycol. Plant Physiol., 67: 64-67.
  • UPCHURCH R.P., PETERSON M.L., HAGAN R.M. 1955. Effect of soil-moisture content on the rate of photosynthesis and respiration in ladino clover (Trifolium repens L.). Plant Physiol., 30: 297-303.
  • WERFF A. VAN DER, HIROSE T., LAMBERS H. 1990. Variation in root respiration; causes and consequences for growth. [In:] Causes and consequences of variation in growth rate and productivity of higher plants. The Hague SPB Academic Publishing, pp. 227-240.
  • ZAGDANSKA B. 1995. Respiratory energy demand for protein turnover and ion transport in wheat leaves upon water demand. Physiol. Plant, 95: 428-436.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-6681cef8-c377-491f-adc0-c3e4ab4357f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.