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Abstract Different physical scale models re-
quire determination of the vegetation canopy aerody-
namic characteristics for calculating the transfer of
energy, mass and momentum between the atmosphere
and the vegetation-covered surface of the earth. The
K-theory inside the canopy was used to obtain a trans-
dental equation for the extinction coefficient, whose
solution allows the calculation of zero plane displace-
ment height and roughness length. The proposed pro-
cedure is used for calculating the above aerodynamic
characteristics for different types of vegetation.

INTRODUCTION

Different physical scale models (climate
simulation, numerical weather prediction,
ecosystem simulation) require determina-
tion of the fluxes of radiation, water vapour,
sensible heat flux and momentum across the
lower boundary of the atmosphere. On the
other hand, the determination of different
fluxes requires special attention to the rea-
son for the sensitivity of the atmosphere to
the state of the land surface, particularly in
the presence of vegetation [10,11]. The mo-
delling of land surface atmosphere interac-
tions involves several sequential procedures.
One of them is the determination of wind
speed, shear stress inside and over the vege-
tation canopy and aerodynamic resistances.
For these calculations it is necessary to know
the extinction coefficient, roughness, length,

zero plane displacement height, momentum
transfer coefficient, all of which depend on
the vegetation morphology. Numerous auth-
ors have devoted attention to the means of
calculating the above parameters keeping in
mind different length scales and boundary
conditions [4,6,7,8].

This paper is focused on simplification
of existing methods for calculating the ex-
tinction coefficient, zero plane displacement
height and roughness length used in differ-
ent physical scale models. The validity of
the proposed method is supported by nu-
merical calculation of the considered aero-
dynamic characteristics for different types
of vegetation.

THEORY
Governing equations

The canopy can be represented as a
block of porous material of constant density
sandwiched between two constant stress
layers confined within boundaries Z, for
the height of the canopy top, and Z;, for the
height of the canopy bottom.

Under neutral conditions, equations for
the transfer of the momentum over and inside
the canopy may be written as follows [8]:
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where 7- shear stress, p - air density, g+ -
friction velocity, K - von Karman’s constant
equal to 0.41, d - zero piane displacement
height, Z - roughness length.

Inside the canopy (Z; < Z < Z,)
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where u- wind speed, Cq - leaf drag coeffi-
cient, L4 - area-averaged stem and leaf area
density, Ps - leaf shelter factor,
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where K is momentum transfer coef-
ficient.

The derivation of Egs (1)-(3) can be
found in Goudriaan [4]. These equations are
commonly used to describe the absorption of
momentum by a rough surface. Finally, we
define lower boundary conditions [8]:
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where Cp is the drag coefficient; it can be
estimated from the size of the roughness
elements on the ground.

In order to calculate wind speed and
shear stress over and inside the canopy and
aerodynamic resistances, the aerodynamic
characteristics of canopy Z, and d, are needed.
This can be done by solving the system of Eqs
(1)-(4) with the five unknowns: u, Kp, Z,, d
and 7 | p | z,. It is well known that the use of

the K-theory inside the canopy may be
physically unrealistic. However, in accordance

with Sellers ez al. [8], it is reasonable to use
this method until suitable second-order
models can be applied to the problem.

Numerous considerations about the
variation of K, inside the canopy have been
offered [2,4,5,8]. The following supposition
seems to be the most convenient:
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where o is a constant [4,8]. In other words
some experimental results have indicated
that the use of Eq. (5) yields the best re-
sults. Moreover, Sellers et al. [8] solved the
system of Eqs (1)-(4) for a certain set of
values Z1, Z;, L4, Cq, Ps and Cp and the re-
sults obtained were in qualitative agree-
ment with those of Shaw and Pereira [9] ob-
tained with a second-order closure model.

An approach to the derivation of
o, d and Zo

First, let us define an expression for
wind profile inside the canopy starting from
Egs (2), (3) and (5). Combining these equa-
tions we come to

2

—Z=FP K (©6)
0Z

where f3, the extinction coefficient, is defined by:
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then, the Eq. (6) can be solved as
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where u, is the velocity at the top of the ca-
nopy [1].

Fundamentally, Z, d and o depend on
the plant geometry and boundary condi-
tions at the interfaces between the flow
regime over the canopy and that inside the
canopy. The boundary conditions can be
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derived from the logarithmic wing profile
above the canopy on the one hand and the
exponential wind profile inside the canopy
on the other, to provide continuity in wind
speed, momentum transfer coefficient and
wind speed gradient.

The first boundary condition is

Hx Z2_d (9)
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where I'; is a constant.
The second boundary condition pro-

vides the continuity for K, .14 thus

K(Zy)—d)pu,=ou, (10)
in accordance with Goudriaan [4]. How-
ever, Garratt [3] has noted that estimates of
momentum transfer coefficient at Z=2,
were larger than a simple downward extrapolation of
Eq. (1) would indicate. In that sense Eq. (10) can be
written in the form:
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The third boundary condition can be
defined by:
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The list of boundary conditions can be
closed with the lower boundary conditions
expressed by Eqs (4a) and (4b). Finally, tak-
ing into account Eqs (8) and (9), conditions
formulated by Eqs (11), (12), (4a) and (4b)
can be written as follows:
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where « is defined as Z1/Z, .

Further, conditions expressed by Eqs
(10) and (12) can be linked as:
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In that manner we have derived a sys-
tem of the four nonlinear Egs: (7), (14),
(15) and (16) for B,0,Z, and d. To slove
this system an iterative procedure should be
applied that requires specification of the in-
itial conditions and the additional cost of
computational time. However, the calcula-
tion of B,0,Z, and d can be simplified in
the following manner.

Taking into account Eq. (7) and intro-
ducing
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after some manipulation it is simple to ob-
tain the following equation:
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It is obvious that x, as introduced by
Eq. (17), depends on the plant geometry
only [8]. Now, combining Egs (14) and (16),
simple manipulation produces:
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i.e., the expression for zero plane displace-
ment height, d. In deriving Eq. (19) it was
taken that I'y = 1, as follows from the conti-
nuity of shear stress in the upper level of the
vegetation canopy. Finally, from Eq. (17), the
expression for roughness lengzttl\] becomes:
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Some experimental results point out
that the values of T, can be taken in the
range 1.5-2.0. In this paper the value of 1.5
is used for T,.



NUMERICAL CALCULATIONS

In order to check the validity of the pro-
posed method we have calculated values of
the extinction coefficient §, the zero plane
displacement height d and the roughness
length Z, as a function of the leaf drag coef-
ficient, leaf area index and shelter factor.

The extinction coefficient was calcu-
lated from Eq. (18). For the value of y as
defined by Eq. (17) we took into account
the values which directly correspond with
those used by Shaw and Pereira [9] and Sel-
lers et. al. [8]. With regard to y, the par-
ameter that is hardest to quantify is the
shelter factor, P, reported to be between 1

and 4, depending on vegetation density.
The values of 3, obtained by Newton’s iter-
ative procedure for different values of y,
are presented in the lower panel of Fig. 1.
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Fig. 1. Calculated values of zero plane displacement
height, d and extinction coefficient, 8 as a function of
plant geometry x. d is normalized by canopy height Z,.
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The calculated values of the extinction coef-
ficient were used to obtain d and Z,, via Eqs

(19) and (20), respectively. The values of
zero plane displacement height d, are shown
in the upper panel of Fig. 1. These are in
qualitative agreement with those of Shaw
and Pereira [9]. The values of the roughness
length, calculated via Eq. (20), plotted as
functions of 1 /Z, and y, respectively, are
shown in Fig. 2. These, too, follow the trend
calculated by Shaw and Pereira [9] and Sel-
lers et al. [8].
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Fig. 2. Calculated values of roughness length Z,

plotted against the calculated height between zero
plane displacement, d and the canopy top and as a
function of plant geometry x. Z, is normalized by ca-

nopy height Z,.
CONCLUSIONS

In the above mentioned models, the par-
ameters need to be derived only once. A pro-
cessor program performs the calculations for
a given surface configuration and the values
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obtained are used as long as the vegetation
morphology remains the same.

Finally, let us mention that the pro-
posed procedure for calculating the extinc-
tion coefficient, the zero plane displacement
heigh, and the roughness length saves consid-
erable computational time.
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