PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 50 | 4 |

Tytuł artykułu

Correlation between porcine PPARGC1A mRNA expression and its downstream target genes in backfat and longissimus dorsi muscle

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Knowledge of in vivo relationship between the coactivator PPARGC1A and its target genes is very limited, especially in the pig. In this study, a real-time PCR experiment was performed on longissimus dorsi muscle (MLD) and backfat with 10 presumed PPARGC1A downstream target genes, involved in energy and fat metabolism, to identify possible relationships with PPARGC1A mRNA expression in vivo in the pig (n = 20). Except for UCP3 and LPL, a very significant difference in expression was found between MLD and backfat for all genes (P < 0.01). Hierarchical cluster analysis and the significant pairing of mRNA expression data between sampling locations suggested a genetic regulation of the expression of several target genes. A positive correlation with PPARGC1A was found for CPT1B, GLUT4, PDK4, and TFAM(P < 0.0001). A negative correlation was found for UCP2, FABP4, LEP (P < 0.0001), and TNF (P = 0.0071). No significant correlation was detected for UCP3 and LPL. This study provides evidence for a clear difference in mRNA expression of crucial genes in fat and energy metabolism between 2 important tissues. Our data suggest a clear impact of PPARGC1A on energy and lipid metabolism in vivo in the pig, through several of these downstream target genes.

Wydawca

-

Rocznik

Tom

50

Numer

4

Opis fizyczny

p.361-369,fig.,ref.

Twórcy

autor
  • Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
  • Centre for Medical Genetics Ghent, Ghent University Hospital, Belgium
  • Centre for Medical Genetics Ghent, Ghent University Hospital, Belgium
autor
  • Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium

Bibliografia

  • Carey AL, Petersen EW, Bruce CR, Southgate RJ, Pilegaard H, Hawley JA, et al.2006. Discordant gene expression in skeletal muscle and adipose tissue of patients with type 2 diabetes: effect of interleukin-6 infusion. Diabetologia 49: 1000-1007.
  • Cawthom WP, Sethi JK, 2008. TNF-a and adipocyte biology. FEBS Lett 582: 117-131.
  • Damon M, Vincent A, Lombardi A, Herpin P, 2000. First evidence of uncoupling protein-2 (UCP-2) and -3 (UCP-3) gene expression in piglet skeletal muscle and adipose tissue. Gene 246: 133-141.
  • Dulloo AG, Samec S, 2001. Uncoupling proteins: their roles in adaptive thermogenesis and substrate metabolism reconsidered. Br J Nutr 86: 123-139.
  • Erkens T, Bilek K, Van Zeveren A, Peelman LJ, 2008. Two new splice variants in porcine PPARGC1A. BMC Research Notes 1: 138.
  • Erkens T, Van Poucke M, Vandesompele J, Goossens K, Van Zeveren A, Peelman LJ, 2006. Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnol 6: 41.
  • Fischer H, Gustafsson T, Sundberg CJ, Norrbom J, Ekman M, Johansson O, Jansson E, 2006. Fatty acid binding protein 4 in human skeletal muscle. Biochem Bioph Res Co 346: 125-130.
  • Fleury C, Sanchis D, 1999. The mitochondrial uncoupling protein-2: current status. Int J Biochem Cell Biol 31: 1261-1278.
  • Handschin C, Spiegelman BM, 2006. Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27: 728-735.
  • Jacobs K, Rohrer G, Van Poucke M, Piumi F, Yerle M, Barthenschlager H, et al. 2006. Porcine PPARGC1A (peroxisome proliferative activated receptor gamma coactivator 1A): coding sequence, genomic organization, polymorphisms and mapping. Cytogenet Genome Res 112: 106-113.
  • Jung K, Park HJ, Kim YH, Hong JP, 2007. Expression of tumor necrosis factor-a and cyclooxygenase-2 mRNA in porcine split-thickness wounds treated with epidermal growth factor by quantitative real-time PCR. Res Vet Sci 82: 344-348.
  • Kageyama H, Hirano T, Okada K, Ebara T, Kageyama A, Murakami T, et al. 2003. Lipoprotein lipase mRNA in white adipose tissue but not in skeletal muscle is increased by pioglitazone through PPAR-γ. Biochem Bioph Res Co 305: 22-27.
  • Kakuma T, Wang Z-W, Pan W, Unger RH, Zhou Y-T, 2000. Role of leptin in peroxisome proliferator-activated receptor gamma coactivator-1 expression. Endocrinology 141: 4576-4582.
  • Kim HJ, Kim SK, Shim WS, Lee JH, Hur KY, Kang ES, et al. 2008. Rosiglitazone improves insulin sensitivity with increased serum leptin levels in patients with type 2 diabetes mellitus. Diabetes Res Clin Pr 81: 42-49.
  • Kim MS, Sweeney TR, Shigenaga JK, Chui LG, Moser A, Grunfeld C, Feingold KR, 2007. Tumor necrosis factor and interleukin 1 decrease RXRa, PPARa, PPARγ, LXRα, and the coactivators SRC-1, PGC-lα, and PGC-lß in liver cells. Metabolism 56: 267-279.
  • Lago R, Gómez R, Lago F, Gómez-Reino J, Gualillo O, 2008. Leptin beyond body weight regulation - current concepts concerning its role in immune function and inflammation. Cell Immunol 252: 139-145.
  • Li L, Beauchamp MC, Renier G, 2002. Peroxisome proliferator-activated receptor α and γ agonists upregulate human macrophage lipoprotein lipase expression. Atherosclerosis 165: 101-110.
  • Lin J, Wu H, Tarr PT, Zhang C-Y, Wu Z, Boss O, et al. 2002. Transcriptional co-activator PGC-lα drives the formation of slow-twitch muscle fibres. Nature 418: 797-801.
  • McGarry JD, Brown NF, 1997. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244: 1-14.
  • Merkel M, Eckel RH, Goldberg IJ, 2002. Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 43: 1997-2006.
  • Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman J J, et al. 2001. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci USA 98: 3820-3825.
  • Miura S, Kai Y, Ono M, Ezaki O, 2003. Overexpression of peroxisome proliferator-activated receptor y coactivator-lα down-regulates GLUT4 mRNA in skeletal muscles. J Biol Chem 278: 31385-31390.
  • Moore ML, Park EA, McMillin JB, 2003. Upstream stimulatory factor represses the induction of carnitine palmitoyltransferase-lß expression by PGC-1. J Biol Chem 278: 17263-17268.
  • Oberkofler H, Esterbauer H, Linnemayr V, Strosberg AD, Krempler F, Patsch W, 2002. Peroxisome proliferator-activated receptor (PPAR) γ coactivator-1 recruitment regulates PPAR subtype specificity. J Biol Chem 277: 16750-16757.
  • Oberkofler H, Klein K, Felder TK, Krempler F, Patsch W, 2006. Role of peroxisome proliferator-activated receptor-γ coactivator-lα in the transcriptional regulation of the human uncoupling protein 2 gene in INS-1E cells. Endocrinology 147: 966-976.
  • Papadopoulos GA, Erkens T, Maes DG, Peelman LJ, van Kempen TA, Buyse J, Janssens GP, 2009. Peripartal feeding strategy with different n-6:n-3 ratios in sows: effect on gene expression in backfat white adipose tissue postpartum. Br J Nutr 101: 197-205.
  • Peffer PL, Lin X, Jacobi SK, Gatlin LA, Woodworth J, Odie J, 2007. Ontogeny of carnitine palmitoyltransferase I activity, carnitine-Km, and mRNA abundance in pigs throughout growth and development. J Nutr 137: 898-903.
  • Pelton PD, Zhou L, Demarest KT, Burris TP, 1999. PPARγ activation induces the expression of the adipocyte fatty acid binding protein gene in human monocytes. Biochem Biophys Res Commun 261: 456-458.
  • Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM, 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829-839.
  • Ramachandran B, Yu G, Gulick T, 2008. Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits. J Biol Chem 283: 11935-11946.
  • Ramsay TG, Richards MP, 2005. Leptin and leptin receptor expression in skeletal muscle and adipose tissue in response to in vivo porcine somatotropin treatment. J Anim Sci 83: 2501-2508.
  • Samulin J, Berget I, Lien S, Sundvold H, 2008. Differential gene expression of fatty acid binding proteins during porcine adipogenesis. Comp Biochem Physiol B Biochem Mol Biol 151: 147-152.
  • Soyal S, Krempler F, Oberkofler H, Patsch W, 2006. PGC-lα: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes. Diabetologia 49: 1477-1488.
  • Spiegelman BM, Puigserver P, Wu Z, 2000. Regulation of adipogenesis and energy balance by PPARγ and PGC-1. Int J Obesity 24: S8-10.
  • Stachowiak M, Szydłowski M, Cieślak J, Switonski M, 2007. SNPs in the porcine PPARGCla gene: interbreed differences and their phenotypic effects. Cell Mol Biol Lett 12: 231-239.
  • Terada S, Tabata I, 2004. Effects of acute bouts of running and swimming exercise on PGC-la protein expression in rat epitrochlearis and soleus muscle. Am J Physiol Endocrinol Metab 286: E208-216.
  • Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, et al. 1999. Housekeeping genes as internal standards: use and limits. J Biotechnol 75: 291-295.
  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F, 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: 0034.1-0034.11.
  • Villarroya F, Iglesias R, Giralt M, 2007. PPARs in the control of uncoupling proteins gene expression. PPAR Res 2007: 74364.
  • Wang MY, Orci L, Ravazzola M, Unger RH, 2005. Fat storage in adipocytes requires inactivation of leptin's paracrine activity: implications for treatment of human obesity. Proc Natl Acad Sci USA 102: 18011-18016.
  • Wende AR, Huss JM, Schaeffer PJ, Giguère V, Kelly DP, 2005. PGC-lα coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 25: 10684-10694.
  • Willson TM, Lambert MH, Kliewer SA, 2001. Peroxisome proliferators-activated receptor γ and metabolic disease. Annu Rev Biochem 70: 341-367.
  • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115-124.
  • Yoon JC, Puigserver P, Chen GX, Donovan J, Wu ZD, Rhee J, et al. 2001. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413: 131-138.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-604490fb-7df4-49ad-8eaf-4127a890ac2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.