PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 61 | 1 |

Tytuł artykułu

Involvement of oxytocin in the nucleus tractus solitarii on central cardiovascular control: interactions with glutamate

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Oxytocin (OT) is a peptide involved in several physiological functions in the central nervous system including central cardiovascular regulation. To clarify the role of endogenous OT in cardiovascular control, one group of anesthetized rats received unilateral microinjections of the OT receptor antagonist [d(CH2)5,Tyr(Me)2,Orn8]-vasotocin (OTA) in the nucleus tractus solitarii (NTS) and a second group was injected with specific OT antiserum (Anti-OT). Moreover, the modulation of the cardiovascular effect of L-glutamate (GLU) by OT was also evaluated by cardiovascular analysis using effective and threshold doses of GLU. Mean arterial pressure (MAP) and heart rate (HR) were measured from a femoral catheter. OTA significantly (p<0.01) decreased the vasopressor and tachycardiac long-lasting response elicited by an effective dose of OT. Microinjections of Anti-OT antibody did not modify the values of MAP and HR compared with the control group. With regard to the OT/GLU coinjections, a subthreshold dose of OT significantly (p<0.001) counteracted the vasodepressor and bradycardiac responses induced by GLU. The coinjection of subthreshold doses of OT and GLU did not produce a change in MAP or in HR. These findings seem to exclude an endogenous tonic action of OT on central regulation of MAP and HR, although they confirm the significant role of OT on central cardiovascular control within the NTS. In fact, the modulation of GLU responses by OT supports the importance of OT on the central cardiovascular adjustments likely acting on the baroreceptor reflex sensitivity.

Wydawca

-

Rocznik

Tom

61

Numer

1

Opis fizyczny

p.59-65,fig.,ref.

Twórcy

autor
  • University of Malaga, Campus de Teatinos s/n. 29080 Malaga, Spain
autor
autor
autor
autor

Bibliografia

  • Rhodes CH, Morrell JI, Pfaff DW. Immunohistochemical analysis of magnocellular elements in rat hypothalamus: distribution and numbers of cells containing neurophysin, oxytocin, and vasopressin. J Comp Neurol 1981; 198(1): 45-64.
  • Kiss A, Mikkelsen JD. Oxytocin-anatomy and functional assignments: a minireview. Endocr Regul 2005; 39(3): 97-105.
  • Rinaman L. Oxytocinergic inputs to the nucleus of the solitary tract and dorsal motor nucleus of the vagus in neonatal rats. J Comp Neurol 1998; 399(1): 101-109.
  • Verbalis JG. The brain oxytocin receptor(s)? Front Neuroendocrinol 1999; 20(2): 146-156.
  • Young WS, Gainer H. Transgenesis and the study of expression, cellular targeting and function of oxytocin, vasopressin and their receptors. Neuroendocrinology 2003; 78(4): 185-203.
  • Argiolas A, Gessa GL. Central functions of oxytocin. Neurosci Biobehav Rev 1991; 15(2): 217-31.
  • Donaldson ZR, Young LJ. Oxytocin, vasopressin, and the neurogenetics of sociality. Science 2008; 322(5903): 900-904.
  • Petersson M. Cardiovascular effects of oxytocin. Prog Brain Res 2002; 139: 281-288.
  • Neumann ID, Landgraf R. Advances in vasopressin and oxytocin-from genes to behaviour to disease. Preface. Prog Brain Res 2008; 170: XI-XIII.
  • Pittman QJ, Spencer SJ. Neurohypophysial peptides: gatekeepers in the amygdala. Trends Endocrinol Metab 2005; 16(8): 343-344.
  • Lipinska S, Ebrowska-Badalla A, Lipinska J. Vasopressin and oxytocin release into CSF after sympathetic stimulation in rat. Endocr Regul 2008; 42(2-3): 77-78.
  • Lipinska S, Zebrowska-Badalla A, Lipinska J. Oxytocin release after bleeding in rat: the role of sympathetic and renin-angiotensin system. J Physiol Pharmacol 2006; 57(4): 627-636.
  • Buijs RM, Van der Beek EM, Renaud LP, Day TA, Jhamandas JH. Oxytocin localization and function in the A1 noradrenergic cell group: ultrastructural and electrophysiological studies. Neuroscience 1990; 39(3): 717-725.
  • Diaz-Cabiale Z, Narvaez JA, Garrido R, Petersson M, Uvnas-Moberg K, Fuxe K. Antagonistic oxytocin/alpha2-adrenoreceptor interactions in the nucleus tractus solitarii: relevance for central cardiovascular control. J Neuroendocrinol 2000; 12(12): 1167-1173.
  • Matsuguchi H, Sharabi FM, Gordon FJ, Johnson AK, Schmid PG. Blood pressure and heart rate responses to microinjection of vasopressin into the nucleus tractus solitarius region of the rat. Neuropharmacology 1982; 21(7): 687-693.
  • Tian PS, Ingram CD. Evidence for independent hypertensive effects of oxytocin and vasopressin in the rat dorsal vagal complex. Neurosci Res 1997; 27(3): 285-288.
  • Rogers RC, Hermann GE. Dorsal medullary oxytocin, vasopressin, oxytocin antagonist, and TRH effects on gastric acid secretion and heart rate. Peptides 1985; 6(6): 1143-1148.
  • Petty MA, Lang RE, Unger T. Differential effects of vasopressin (AVP) and oxytocin (OXT) on the baroreceptor reflex in conscious rats. Clin Exp Hypertens A 1984; 6(10-11): 1943-1946.
  • Higa KT, Mori E, viana FF, Morris M, Michelini LC. Baroreflex control of heart rate by oxytocin in the solitary-vagal complex. Am J Physiol Regul Integr Comp Physiol 2002; 282(2): R537-R545.
  • Michelini LC, Marcelo MC, Amico J, Morris M. Oxytocinergic regulation of cardiovascular function: studies in oxytocin-deficient mice. Am J Physiol Heart Circ Physiol 2003; 284(6): H2269-H2276.
  • Michelini LC. Differential effects of vasopressinergic and oxytocinergic pre-autonomic neurons on circulatory control: reflex mechanisms and changes during exercise. Clin Exp Pharmacol Physiol 2007; 34(4): 369-376.
  • Martins AS, Crescenzi A, Stern JE, Bordin S, Michelini LC. Hypertension and exercise training differentially affect oxytocin and oxytocin receptor expression in the brain. Hypertension 2005; 46(4): 1004-1009.
  • Szczepanska-Sadowska E. Role of neuropeptides in central control of cardiovascular responses to stress. J Physiol Pharmacol 2008; 59(Suppl 8): 61-89.
  • Wsol A, Cudnoch-Jedrzejewska A, Szczepanska-Sadowska E, Kowalewski S, Puchalska L. Oxytocin in the cardiovascular responses to stress. J Physiol Pharmacol 2008; 59(Suppl 8): 123-127.
  • Callahan MF, Kirby RF, Cunningham JT, et al. Central oxytocin systems may mediate a cardiovascular response to acute stress in rats. Am J Physiol 1989; 256(5 Pt 2): H1369-H1377.
  • Morris M, Callahan MF, Li P, Lucion AB. Central oxytocin mediates stress-induced tachycardia. J Neuroendocrinol 1995; 7(6): 455-459.
  • Maier T, Dai WJ, Csikos T, Jirikowski GF, Unger T, Culman J. Oxytocin pathways mediate the cardiovascular and behavioral responses to substance P in the rat brain. Hypertension 1998; 31(1 Pt 2): 480-486.
  • Poulin P, Komulainen A, Takahashi Y, Pittman QJ. Enhanced pressor responses to ICV vasopressin after pretreatment with oxytocin. Am J Physiol 1994; 266(2 Pt 2): R592-R598.
  • Narvaez JA, Aguirre JA, Fuxe K. Subpicomolar amounts of NPY(13-36) injected into the nucleus tractus solitarius of the rat counteract the cardiovascular responses to L-glutamate. Neurosci Lett 1993; 151(2): 182-186.
  • Diaz-Cabiale Z, Parrado C, Rivera A, et al. Galanin-neuropeptide Y (NPY) interactions in central cardiovascular control: involvement of the NPY Y receptor subtype. Eur J Neurosci 2006; 24(2): 499-508.
  • Diaz-Cabiale Z, Parrado C, Fuxe K, Agnati L, Narvaez JA. Receptor-receptor interactions in central cardiovascular regulation. Focus on neuropeptide/alpha(2)-adrenoreceptor interactions in the nucleus tractus solitarius. J Neural Transm 2007; 114(1): 115-125.
  • Dayanithi G, Viero C, Shibuya I. The role of calcium in the action and release of vasopressin and oxytocin from CNS neurones/terminals to the heart. J Physiol Pharmacol 2008; 59(Suppl 8): 7-26.
  • Bankowski K, Manning M, Seto J, Haldar J, Sawyer WH. Design and synthesis of potent in vivo antagonists of oxytocin. Int J Pept Protein Res 1980; 16(5): 382-391.
  • Blevins JE, Schwartz MW, Baskin DG. Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. Am J Physiol Regul Integr Comp Physiol 2004; 287(1): R87-R96.
  • Blevins JE, Eakin TJ, Murphy JA, Schwartz MW, Baskin DG. Oxytocin innervation of caudal brainstem nuclei activated by cholecystokinin. Brain Res 2003; 993(1-2): 30-41.
  • Melis MR, Spano MS, Succu S, Argiolas A. The oxytocin antagonist d(CH2)5Tyr(Me)2-Orn8-vasotocin reduces non-contact penile erections in male rats. Neurosci Lett 1999; 265(3): 171-174.
  • Olson BR, Drutarosky MD, Stricker EM, Verbalis JG. Brain oxytocin receptor antagonism blunts the effects of anorexigenic treatments in rats: evidence for central oxytocin inhibition of food intake. Endocrinology 1991; 129(2): 785-791.
  • Chini B, Manning M. Agonist selectivity in the oxytocin/vasopressin receptor family: new insights and challenges. Biochem Soc Trans 2007; 35(Pt 4): 737-741.
  • Mack SO, Kc P, Wu M, Coleman BR, Tolentino-Silva FP, Haxhiu MA. Paraventricular oxytocin neurons are involved in neural modulation of breathing. J Appl Physiol 2002; 92(2): 826-834.
  • Seagard JL, Dean C, Hopp FA. Properties of NTS neurons receiving input from barosensitive receptors. Ann NY Acad Sci 2001; 940: 142-156.
  • Talman WT, Perrone MH, Reis DJ. Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibers. Science 1980; 209(4458): 813-815.
  • Talman WT. Glutamatergic transmission in the nucleus tractus solitarii: from server to peripherals in the cardiovascular information superhighway. Braz J Med Biol Res 1997; 30(1): 1-7.
  • Seagard JL, Dean C, Hopp FA. Neurochemical transmission of baroreceptor input in the nucleus tractus solitarius. Brain Res Bull 2000; 51(2): 111-118.
  • Simms AE, Paton JF, Pickering AE. Disinhibition of the cardiac limb of the arterial baroreflex in rat: a role for metabotropic glutamate receptors in the nucleus tractus solitarii. J Physiol 2006; 575(Pt 3): 727-738.
  • Landgraf R, Neumann ID. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 2004; 25(3-4): 150-176.
  • Jo YH, Stoeckel ME, Freund-Mercier MJ, Schlichter R. Oxytocin modulates glutamatergic synaptic transmission between cultured neonatal spinal cord dorsal horn neurons. J Neurosci 1998; 18(7): 2377-2386.
  • Robinson DA, Wei F, Wang GD, et al. Oxytocin mediates stress-induced analgesia in adult mice. J Physiol 2002; 540(Pt 2): 593-606.
  • Bosch OJ, Sartori SB, Singewald N, Neumann ID. Extracellular amino acid levels in the paraventricular nucleus and the central amygdala in high- and low-anxiety dams rats during maternal aggression: regulation by oxytocin. Stress 2007; 10(3): 261-270.
  • Ebner K, Bosch OJ, Kromer SA, Singewald N, Neumann ID. Release of oxytocin in the rat central amygdala modulates stress-coping behavior and the release of excitatory amino acids. Neuropsychopharmacology 2005; 30(2): 223-230.
  • Engelmann M, Bull PM, Brown CH, et al. GABA selectively controls the secretory activity of oxytocin neurons in the rat supraoptic nucleus. Eur J Neurosci 2004; 19(3): 601-608.
  • Fuxe K, Marcellino D, Rivera A, et al. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Res Rev 2008; 58(2): 415-452.
  • Devost D, Zingg HH. Identification of dimeric and oligomeric complexes of the human oxytocin receptor by co-immunoprecipitation and bioluminescence resonance energy transfer. J Mol Endocrinol 2003; 31(3): 461-471.
  • Osako Y, Otsuka T, Taniguchi M, Oka T, Kaba H. Oxytocin enhances presynaptic and postsynaptic glutamatergic transmission between rat olfactory bulb neurones in culture. Neurosci Lett 2001; 299(1-2): 65-68.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5f535dea-8f6c-41c2-8439-843ab33468f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.