PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 15 | 2 |

Tytuł artykułu

Characterization of proteins associating with 5' terminus of PGHS-1 mRNA

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Induction of Prostaglandin Endoperoxide H Synthase-1 (PGHS-1) gene has been previously documented in a few studies during events such as development and cellular differentiation. However, molecular mechanisms governing the regulation of PGHS-1 gene expression and contributing to changes in protein levels are poorly understood. Using the MEG-01 cell model of PGHS-1 gene induction, our laboratory has previously demonstrated that the 5’UTR and the first two exons of PGHS-1 mRNA had a significant impact on decreasing the translational efficiency of a reporter gene and suggested that the presence of a secondary structure is required for conservation of this activity. This 5’end of PGHS-1 mRNA sequence has also been shown to associate with nucleolin protein. In the current study, we set to investigate the protein composition of the mRNP (messenger ribonucleoprotein) associating with the 5’end of PGHS-1 mRNA and to identify its protein members. RNA/protein binding assays coupled with LC-MS analysis identified serpin B1 and NF45 (nuclear factor 45) proteins as potential members of PGHS-1 mRNP complex. Immunoprecipitation experiments using MEG-01 protein extracts validated mass spectrometry data and confirmed binding of nucleolin, serpin B1, NF45 and NF90. The RNA fraction was extracted from immunoprecipitated mRNP complexes and association of RNA binding proteins, serpin B1, NF45 and NF90, to PGHS-1 mRNA target sequence was confirmed by RT-PCR. Together these data suggest that serpin B1, NF45 and NF90 associate with PGHS-1 mRNA and can potentially participate in the formation a single or a number of PGHS-1 ribonucleoprotein complexes, through nucleolin that possibly serves as a docking base for other protein complex members.

Wydawca

-

Rocznik

Tom

15

Numer

2

Opis fizyczny

p.196-214,fig.,ref.

Twórcy

autor
  • University of Ottawa, 451 Smyth Rd., Ottawa, Ontario, K1H 8M5 Canada

Bibliografia

  • 1. Smith, W.L., DeWitt, D.L. and Garavito, R.M. Cyclooxygenases: Structural, cellular, and molecular biology. Annu. Rev. Biochem. 69 (2000) 145-182. DOI: 10.1146/annurev.biochem.69.1.145.
  • 2. Smith, W.L. and Langenbach, R. Why there are two cyclooxygenase isozymes. J. Clin. Invest. 107 (2001) 1491-1495. DOI: 10.1172/JCI13271.
  • 3. Parente, L. and Perretti, M. Advances in the pathophysiology of constitutive and inducible cyclooxygenases: Two enzymes in the spotlight. Biochem. Pharmacol. 65 (2003) 153-159.
  • 4. Smith, C.J., Morrow, J.D., Roberts, L.J. 2nd and Marnett, L.J. Differentiation of monocytoid THP-1 cells with phorbol ester induces expression of prostaglandin endoperoxide synthase-1 (COX-1). Biochem. Biophys. Res. Commun. 192 (1993) 787-793. DOI: 10.1006/bbrc.1993.1483.
  • 5. Brannon, T.S., North, A.J., Wells, L.B. and Shaul, P.W. Prostacyclin synthesis in ovine pulmonary artery is developmentally regulated by changes in cyclooxygenase-1 gene expression. J. Clin. Invest. 93 (1994) 2230-2235. DOI: 10.1172/JCI117220.
  • 6. Mroske, C., Plant, M.H., Franks, D.J. and Laneuville, O. Characterization of prostaglandin endoperoxide H synthase-1 enzyme expression during differentiation of the megakaryocytic cell line MEG-01. Exp. Hematol. 28 (2000) 411-421.
  • 7. Plant, M.H. and Laneuville, O. Characterization of a novel transcript of prostaglandin endoperoxide H synthase 1 with a tissue-specific profile of expression. Biochem. J. 344 Pt 3 (1999) 677-685.
  • 8. Duquette, M. and Laneuville, O. Translational regulation of prostaglandin endoperoxide H synthase-1 mRNA in megakaryocytic MEG-01 cells. specific protein binding to a conserved 20-nucleotide CIS element in the 3'-untranslated region. J. Biol. Chem. 277 (2002) 44631-44637. DOI: 10.1074/jbc.M207007200.
  • 9. Jiang, Y.J., Lu, B., Choy, P.C. and Hatch, G.M. Regulation of cytosolic phospholipase A2, cyclooxygenase-1 and -2 expression by PMA, TNFalpha, LPS and M-CSF in human monocytes and macrophages. Mol. Cell. Biochem. 246 (2003) 31-38.
  • 10. Jiang, Y.J., Xu, T.R., Lu, B., Mymin, D., Kroeger, E.A., Dembinski, T., Yang, X., Hatch, G.M. and Choy, P.C. Cyclooxygenase expression is elevated in retinoic acid-differentiated U937 cells. Biochim. Biophys. Acta. 1633 (2003) 51-60. DOI: S1388198103000726 [pii].
  • 11. Rocca, B., Morosetti, R., Habib, A., Maggiano, N., Zassadowski, F., Ciabattoni, G., Chomienne, C., Papp, B. and Ranelletti, F.O. Cyclooxygenase-1, but not -2, is upregulated in NB4 leukemic cells and human primary promyelocytic blasts during differentiation. Leukemia 18 (2004) 1373-1379. DOI: 10.1038/sj.leu.2403407 [doi]; 2403407 [pii].
  • 12. Schneider, N., Lanz, S., Ramer, R., Schaefer, D. and Goppelt-Struebe, M. Up-regulation of cyclooxygenase-1 in neuroblastoma cell lines by retinoic acid and corticosteroids. J. Neurochem. 77 (2001) 416-424.
  • 13. Mullol, J., Fernandez-Morata, J.C., Roca-Ferrer, J., Pujols, L., Xaubet, A., Benitez, P. and Picado, C. Cyclooxygenase 1 and cyclooxygenase 2 expression is abnormally regulated in human nasal polyps. J. Allergy Clin. Immunol. 109 (2002) 824-830. DOI: S0091674902962603 [pii].
  • 14. Bunimov, N., Smith, J.E., Gosselin, D. and Laneuville, O. Translational regulation of PGHS-1 mRNA: 5' untranslated region and first two exons conferring negative regulation. Biochim. Biophys. Acta. 1769 (2007) 92- 105. DOI: 10.1016/j.bbaexp.2007.01.004.
  • 15. Ghisolfi-Nieto, L., Joseph, G., Puvion-Dutilleul, F., Amalric, F. and Bouvet, P. Nucleolin is a sequence-specific RNA-binding protein: Characterization of targets on pre-ribosomal RNA. J. Mol. Biol. 260 (1996) 34-53. DOI: S0022-2836(96)90380-0 [pii]; 10.1006/jmbi. 1996.0380 [doi].
  • 16. Moore, M.J. From birth to death: The complex lives of eukaryotic mRNAs. Science 309 (2005) 1514-1518. DOI: 10.1126/science. 1111443.
  • 17. Holcik, M. and Pestova, T.V. Translation mechanism and regulation: Old players, new concepts. meeting on translational control and non-coding RNA. EMBO Rep. 8 (2007) 639-643. DOI: 10.1038/sj.embor. 7400988.
  • 18. Mili, S. and Steitz, J.A. Evidence for reassociation of RNA-binding proteins after cell lysis: Implications for the interpretation of immunoprecipitation analyses. RNA. 10 (2004) 1692-1694. DOI: 10.1261/rna.7151404.
  • 19. Niranjanakumari, S., Lasda, E., Brazas, R. and Garcia-Blanco, M.A. Reversible cross-linking combined with immunoprecipitation to study RNAprotein interactions in vivo. Methods 26 (2002) 182-190. DOI: 10.1016/S1046-2023(02)00021-X.
  • 20. Ule, J., Jensen, K., Mele, A. and Darnell, R.B. CLIP: A method for identifying protein-RNA interaction sites in living cells. Methods 37 (2005) 376-386. DOI: 10.1016/j.ymeth.2005.07.018.
  • 21. Srisawat, C. and Engelke, D.R. Streptavidin aptamers: Affinity tags for the study of RNAs and ribonucleoproteins. RNA 7 (2001) 632-641.
  • 22. Srisawat, C. and Engelke, D.R. RNA affinity tags for purification of RNAs and ribonucleoprotein complexes. Methods 26 (2002) 156-161. DOI: 10.1016/S1046-2023(02)00018-X.
  • 23. Walker, S.C., Scott, F.H., Srisawat, C. and Engelke, D.R. RNA affinity tags for the rapid purification and investigation of RNAs and RNA-protein complexes. Methods Mol. Biol. 488 (2008) 23-40. DOI: 10.1007/978-1- 60327-475-3_3.
  • 24. Johnson, R.F., McCarthy, S.E., Godlewski, P.J. and Harty, R.N. Ebola virus VP35-VP40 interaction is sufficient for packaging 3E-5E minigenome RNA into virus-like particles. J. Virol. 80 (2006) 5135-5144. DOI: 10.1128/JVI.01857-05.
  • 25. Trinkle-Mulcahy, L., Boulon, S., Lam, Y.W., Urcia, R., Boisvert, F.M., Vandermoere, F., Morrice, N.A., Swift, S., Rothbauer, U., Leonhardt, H. and Lamond, A. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J. Cell Biol. 183 (2008) 223-239. DOI: 10.1083/jcb.200805092.
  • 26. Satoh, M., Shaheen, V.M., Kao, P.N., Okano, T., Shaw, M., Yoshida, H., Richards, H.B. and Reeves, W.H. Autoantibodies define a family of proteins with conserved double-stranded RNA-binding domains as well as DNA binding activity. J. Biol. Chem. 274 (1999) 34598-34604.
  • 27. Saunders, L.R., Perkins, D.J., Balachandran, S., Michaels, R., Ford, R., Mayeda, A. and Barber, G.N. Characterization of two evolutionarily conserved, alternatively spliced nuclear phosphoproteins, NFAR-1 and -2, that function in mRNA processing and interact with the double-stranded RNA-dependent protein kinase, PKR. J. Biol. Chem. 276 (2001) 32300- 32312. DOI: 10.1074/jbc.M104207200.
  • 28. Reichman, T.W., Muniz, L.C. and Mathews, M.B. The RNA binding protein nuclear factor 90 functions as both a positive and negative regulator of gene expression in mammalian cells. Mol. Cell. Biol. 22 (2002) 343-356.
  • 29. Remold-O'Donnell, E., Nixon, J.C. and Rose, R.M. Elastase inhibitor. characterization of the human elastase inhibitor molecule associated with monocytes, macrophages, and neutrophils. J. Exp. Med. 169 (1989) 1071- 1086.
  • 30. Cooley, J., Takayama, T.K., Shapiro, S.D., Schechter, N.M. and RemoldO'Donnell, E. The serpin MNEI inhibits elastase-like and chymotrypsin-like serine proteases through efficient reactions at two active sites. Biochemistry. 40 (2001) 15762-15770.
  • 31. Gettins, P. G. W., Patson, P. and Olson, S. Serpins: structure, function and biology, 1st Edition edition, Landes Bioscience, 1996.
  • 32. Zeng, W., Silverman, G.A. and Remold-O'Donnell, E. Structure and sequence of human M/NEI (monocyte/neutrophil elastase inhibitor), an ovserpin family gene. Gene 213 (1998) 179-187.
  • 33. Bird, C.H., Blink, E.J., Hirst, C.E., Buzza, M.S., Steele, P.M., Sun, J., Jans, D.A. and Bird, P.I. Nucleocytoplasmic distribution of the ovalbumin serpin PI-9 requires a nonconventional nuclear import pathway and the export factor Crm1. Mol. Cell. Biol. 21 (2001) 5396-5407. DOI: 10.1128/MCB. 21.16.5396-5407.2001.
  • 34. Popova, E.Y., Claxton, D.F., Lukasova, E., Bird, P.I. and Grigoryev, S.A. Epigenetic heterochromatin markers distinguish terminally differentiated leukocytes from incompletely differentiated leukemia cells in human blood. Exp. Hematol. 34 (2006) 453-462. DOI: 10.1016/j.exphem.2006.01.003.
  • 35. Missen, M.A., Haylock, D., Whitty, G., Medcalf, R.L. and Coughlin, P.B. Stage specific gene expression of serpins and their cognate proteases during myeloid differentiation. Br. J. Haematol. 135 (2006) 715-724. DOI: 10.1111/j.1365-2141.2006.06360.x.
  • 36. Kao, P.N., Chen, L., Brock, G., Ng, J., Kenny, J., Smith, A.J. and Corthesy, B. Cloning and expression of cyclosporin A- and FK506-sensitive nuclear factor of activated T-cells: NF45 and NF90. J. Biol. Chem. 269 (1994) 20691-20699.
  • 37. Corthesy, B. and Kao, P.N. Purification by DNA affinity chromatography of two polypeptides that contact the NF-AT DNA binding site in the interleukin 2 promoter. J. Biol. Chem. 269 (1994) 20682-20690.
  • 38. Marcoulatos, P., Koussidis, G., Mamuris, Z., Velissariou, V. and Vamvakopoulos, N.C. Mapping interleukin enhancer binding factor 2 gene (ILF2) to human chromosome 1 (1q11-qter and 1p11-p12) by polymerase chain reaction amplification of human-rodent somatic cell hybrid DNA templates. J. Interferon Cytokine Res. 16 (1996) 1035-1038.
  • 39. Guan, D., Altan-Bonnet, N., Parrott, A.M., Arrigo, C.J., Li, Q., Khaleduzzaman, M., Li, H., Lee, C.G., Pe'ery, T. and Mathews, M.B. Nuclear factor 45 (NF45) is a regulatory subunit of complexes with NF90/110 involved in mitotic control. Mol. Cell. Biol. 28 (2008) 4629- 4641. DOI: 10.1128/MCB.00120-08.
  • 40. Merrill, M.K. and Gromeier, M. The double-stranded RNA binding protein 76:NF45 heterodimer inhibits translation initiation at the rhinovirus type 2 internal ribosome entry site. J. Virol. 80 (2006) 6936-6942. DOI: 10.1128/JVI.00243-06.
  • 41. Shim, J., Lim, H., R Yates, J. and Karin, M. Nuclear export of NF90 is required for interleukin-2 mRNA stabilization. Mol. Cell. 10 (2002) 1331- 1344.
  • 42. Kuwano, Y., Kim, H.H., Abdelmohsen, K., Pullmann, R.,Jr, Martindale, J.L., Yang, X. and Gorospe, M. MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. Mol. Cell. Biol. 28 (2008) 4562-4575. DOI: 10.1128/MCB.00165-08.
  • 43. Xu, Y.H. and Grabowski, G.A. Molecular cloning and characterization of a translational inhibitory protein that binds to coding sequences of human acid beta-glucosidase and other mRNAs. Mol. Genet. Metab. 68 (1999) 441- 454. DOI: 10.1006/mgme.1999.2934.
  • 44. Maruo, N., Kobayashi, Y., Horiuchi, H., Kondo, M. and Fujita, S. Histochemical study on the maturation of human megakaryocytes using microfluorometry. Histochemistry 97 (1992) 141-145.
  • 45. Yanagida, M., Shimamoto, A., Nishikawa, K., Furuichi, Y., Isobe, T. and Takahashi, N. Isolation and proteomic characterization of the major proteins of the nucleolin-binding ribonucleoprotein complexes. Proteomics 1 (2001) 1390-1404. DOI: 2-Z.
  • 46. Chen, C.Y., Gherzi, R., Andersen, J.S., Gaietta, G., Jurchott, K., Royer, H.D., Mann, M. and Karin, M. Nucleolin and YB-1 are required for JNKmediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev. 14 (2000) 1236-1248.
  • 47. Raslova, H., Kauffmann, A., Sekkaï, D., Ripoche, H., Larbret, F., Robert, T., Le Roux, D.T., Kroemer, G., Debili, N., Dessen, P., Lazar, V. and Vainchenker, W. Interrelation between polyploidization and megakaryocyte differentiation: a gene profiling approach. Blood 109 (2007) 3225-3234. DOI 10.1182/blood-2006-07-037838.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5d8ac21a-5634-4f18-a0da-9326290a6a6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.