PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 11 | 1 |

Tytuł artykułu

Decomposition and utilization of particulate organic matter by bacteria in lakes of different trophic status

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Enzymatic decomposition and bacterial utilization of various types of particulate and dissolved substrates was studied during spring-summer period in four lakes of Mazurian Lake District (Northern Poland). We found that seston particles, similarly as dissolved organic matter (DOM), undergo intensive decomposition processes in lake water, but only after their previous colonization by bacteria. In lakes of low or moderate trophic status free-living microorganisms predominated. They preferentially utilized low molecular weight, dissolved organic compounds. Increases in particulate organic matter (POM) content in these environments caused rapid change of substrate exploitation strategy and adaptation of these bacteria to live in particle-attached forms. In lakes of POM and colloidal DOM (CDOM) abundant particle-attached microheterotrophs, although less metabolically active than free-living bacteria, were mainly responsible for secondary production and POM mineralization A mechanisms that permit effective POM exploitation by seston-attached bacteria was overproduction of relatively low active (high Km) enzymes (e.g. aminopeptidase) and/or synthesis of the enzymes (e.g. β-glucosidase or glucosaminidase) that were optimally adapted (low Km) to the environment.

Wydawca

-

Rocznik

Tom

11

Numer

1

Opis fizyczny

p.53-65,fig.,ref.

Twórcy

autor
  • University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
autor

Bibliografia

  • 1. TRANVIK L. The Role of Heterotrophic Bacterioplankton in Carbonand Energy Flow of Pelagic Ecoststems. A Reviev of Some Ecological and Methodological Problems. Lund Universitet- Limnologiska Institutionen, Lund , 1984.
  • 2. THURMAN E. M. Organic Carbon in Natural Waters: Amount, Origin and Classification. In: E. M. Thurman [Ed] Organic Geochemistry of Natural Waters. Martinus Nijhoff/ Dr W. Junk Publishers, Dordrecht, pp. 687-823, 1985.
  • 3. CHRÓST R. J., MÜNSTER U., RAI H., ALBRECHT D., WITZEL, K. P., OVERBECK J. Photosynthetic production and exoenzymatic degradation of organic matter in the euphotic zone of a eutrophic lake. J. Plankton Res. 11, 223, 1989.
  • 4. MÜNSTER U., CHRÓST R. J. Origin, composition and microbialutilization of dissolved organic matter. In: J. Overbeck R. J. Chróst [Eds] Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer Verlag, New York, pp. 8-46, 1990.
  • 5. CHRÓST R. J. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chróst R. J. [Ed.] Microbial Enzymes in Aquatic Environments. Springer-Verlag, New York Berlin Heidelberg, pp. 29-54, 1991.
  • 6. CHRÓST R.J.Plankton photosynthesis, extra cellular release and bacterial utilization of released dissolved organic carbon (RDOC) in lakes of different trophy. Acta Microbiol. Polon., 32, 275, 1983.
  • 7. SIUDA W., WCISŁO R., CHRÓST R .J. Composition and bacterial utilization of photosynthetically produced organic matter in an eutrophic lake. Arch. Hydrobiol. 121, 473, 1991.
  • 8. RILEY G. A. Particulate matter in seawater. Adv. .Mar. Biol.8, 1,1970.
  • 9. PARSONS T. R., STRICKLAND J. D. H. On the production of particulate organic carbonby heterotrophic processes in sea water. Deep Sea Res. 8, 211, 1962.
  • 10. OHLE W. Der Stoffhaushalt der Seen als Grundlage einer allgemeinen Stoffwechseldynamik der Gewässer. Kieler Meeresforschungen, 18, 107, 1962.
  • 11. WETZEL R.G., RICH P. H., MILLER M.C., ALLEN H. L. Metabolism of dissolved and particulate detrital carbon in a temperate hard water lake. Mem. Ist. Ital. Idrobiol. 29 (suppl.), 1972.
  • 12. FUKAMIK., SIMIDU U., TAGAN.Distribution of heterotrophic bacteria in relation to the concentration of particulate organic matter in seawater. Can. J. Microbiol. 29, 570, 1983.
  • 13. PALUMBO A.V., FERGUSON R.L., RUBLEE P.A. Size of suspended bacterial cells and association of heterotrophic activity with size fractions of particles in estuarine and coastal waters. Appl. Environ. Microbiol. 48, 157, 1984.
  • 14. CHRÓST R. J., RIEMAN B. Storm-stimulated enzymatic decomposition of organic matter in benthic pelagic coastal mesocosm. Mar Ecol. Prog. Ser. 108, 185, 1994.
  • 15. WETZEL R.G. Extracellular enzymatic interactions: Storage, redistribution and interspecific communication. In: R.J. Chróst [Ed] Microbial Enzymes in Aquatic Environments. Springer-Verlag, New York, pp. 6-26, 1991.
  • 16. CHRÓST R.J. Microbial ectoenzymes in aquatic environments. In: J. Overbeck & R. J. Chróst [Eds.] Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer Verlag, New York. pp. 47 - 78, 1990.
  • 17. CHRÓST R.J. Microbial enzymatic degradation and utilization of organic matter. In: J. Overbeck & R. J. Chróst [Eds.] Microbial Ecology of Lake Plussee. Ecol. Stud 105, Springer Verlag, New York, pp. 118-174, 1994.
  • 18. MARKER A. F. H., CROWTHER C. A., GUNN R. J. .M. Methanol and acetone as solvents for estimating chlorophyll and phaeopigments by spectrophotometry. Arch. Hydrobiol. Beih. ErgeTVC. Limnol. 14, 52, 1980.
  • 19. PORTER K. G., FEIG Y. S. The use of DAPI for identifying and counting aquatic microflora.– Limnol. Oceanogr., 25, 943, 1980.
  • 20. CHRÓST R. J., KOTON M., SIUDA W. Bacterial Secondary Production and Bacterial Biomass in Four Mazurian Lakes of Differing Trophic Status. Pol. J. Environ. St. 9, 255, 2000.
  • 21. LEE S., FURHMAN J. .A. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53, 1298, 1987.
  • 22. CARLSON R. E. A trophic state index for lakes. Limnol. Oceanogr. 22, 261, 1977.
  • 23. CHRÓST R.J, GAJEWSKIA., SIUDA W.Fluorescein-diacetate (FDA) assay for determining microbial esterase activityin lakewater.Arch. Hydrobiol.Spec.Issues Advanc. Limnol. 54, 167, 1999.
  • 24. REICHARDT W. Measurement of enzymatic solubilization of P.O. M. in marine sediments by using dye release-techniques. Arch. Hydrobiol. Beih. ErgeTVC. Limnol. 31, 353, 1988.
  • 25. MÜNSTER U. Extracellular Enzyme Activity in Eutrophic and Polyhumic Lakes. In: Chróst, R .J. [Ed] Microbial Enzymes in Aquatic Environments. Springer Verlag, New York, pp. 96 – 122, 1991.
  • 26. SIUDA W., CHRÓST R. J. Decomposition and utilization of dissolved organic substrates by bacteria in lakes of different trophic status. (in prep.)
  • 27. JANSSON M. Induction of high phosphatase activity by aluminum in acid lakes. Arch. Hydrobiol. 93, 32, 1981.
  • 28. RIEMAN B. Differentiation between heterotrophic and photosynthetic plankton size fractionation, glucose uptake, ATP and chlorophyll content. Oikos 31, 358, 1978..
  • 29. PEDROS-ALIO C., BROCK T. D. Assessing biomass and production of bacteria in eutrophic lake. App. Environ. Microbiol. 44, 203, 1983.
  • 30. KIRCHMAN D., DUCKLOW H.W., MITCHELL R. Estimates of bacterial growth from changes of uptake rates and biomass. App. Environ. Microbiol. 44, 1296, 1986.
  • 31. MARSCHALL K. C., BITTON G. Microbial adhesion in perspective. In: Bitton, G. & Marschall, K.C. [Eds] Adsorption of Microorganisms to Surfaces. Willey, New York, pp. 1-50, 1980.
  • 32. PAERL H. Microbial organic carbon recovery in aquatic systems. Limnol. Oceanogr. 23, 927, 1980.
  • 33. LITTLE J. E., SJORGEN R. E., CARSON G. R. Measurement of proteolysis in natural waters. Appl. Environ. Microbiol. 37, 900, 1979.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5ce6b6fa-122e-4256-abdb-214980c81d2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.