PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2005 | 64 | 3 |

Tytuł artykułu

A morphometric study of the amygdala in the guinea pig

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The characteristic features of guinea pig amygdala (CA), as shown by volumetric comparisons of the individual nuclei, are the poor development of the basolateral (BL) and lateral olfactory tract (NLOT) nuclei as well as the strong formation of the lateral (LA) and basomedial (BM) nuclei. The central (CE), cortical (CO) and medial (ME) nuclei also appear to be well represented in this species. All these features are even more pronounced when the total number of neurons in the nuclei referred to was taken into consideration. A comparison of the densities of neurons in the individual nuclei with the mean numerical density of cells in the guinea pig CA indicates that the densities of neurons in LA, BL, BM, CE and CO are significantly lower than the mean (p < 0.05), whereas in the ME and NLOT these values are significantly higher than the mean (p < 0.05). It is noteworthy, that the densities of the neurons in CE and CO do not differ statistically from each other (p > 0.05) and are significantly higher than the respective values in LA, BL and BM (p < 0.05). Furthermore, a similar division of the guinea pig CA may to some extent be made using the size parameters of the amygdaloid neurons as a marker. Interestingly, the large neurons populate organised CA areas like LA, BL and BM less densely, whereas the small cells create ME and NLOT, where the neurons are densely arranged. CE and CO occupy intermediate positions, with the neurons similar in size to the mean for the guinea pig CA.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

64

Numer

3

Opis fizyczny

p.151-160,fig.,ref.

Twórcy

autor
  • University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-767 Olsztyn, Poland
autor
autor
autor

Bibliografia

  • 1. Berdel B, Moryś J, Maciejewska B, Dziewiątkowski J (1997) Volume and topographical changes of the basolateral complex during the development of the rat’s amygdaloid body. Folia Morphol, 56: 1–11.
  • 2. Bookstein FL (1986) Size and shape spaces for landmark data in two dimensions. Statistical Scie, 1: 181–222.
  • 3. Braak H, Braak E (1983) Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res Bull, 11: 349–365.
  • 4. Breathnach AS, Goldby F (1954) The amygdaloid nuclei, hippocampus and other parts of rhinencephalon in the porpoise (Phocaena phocaena). J Anat, 88: 267–291.
  • 5. Caffe AR, van Leeuwen FW, Luiten PG (1987) Vasopressin cells in the medial amygdala of the rat project to the lateral septum and ventral hippocampus. J Comp Neurol, 261: 237–252.
  • 6. Canteras NS, Swanson LW (1992) Projections of the ventral subiculum to the amygdala, septum and hypothalamus: A PHAL anterograde track-tracing study in the rat. J Comp Neurol, 324: 180–194.
  • 7. Crosby EC, Humphrey T (1941) Studies on the vertebrate telencephalon. II. The nuclear pattern of olfactory nucleus, tuberculum olfactorium and the amygdaloid complex in adult man. J Comp Neurol, 74: 309–352.
  • 8. Crosby EC, Humphrey T (1944) Studies on the vertebrate telencephalon. III. The amygdaloid complex in the shrew (Blarina brevicauda). J Comp Neurol, 81: 285–305.
  • 9. Dziewiątkowski J, Berdel B, Kowiański P, Kubasik-Juraniec J, Bobek-Bilewicz B, Moryś J (1998) The amygdaloid body of the rabbit — a morphometric study using image analyser. Folia Morphol, 57: 93–103.
  • 10. Flugge G, Ahrens O, Fuchs E (1994) Monoamine receptors in the amygdaloid complex of the tree shrew (Tupaia belangeri). J Comp Neurol, 343: 597–608.
  • 11. Gower JC (1975) Generalized Procrustes analysis. Psychometrika, 40: 33–51.
  • 12. Gundersen HJG, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc, 147: 229–263.
  • 13. Humphrey T (1936) The telencephalon of the bat. I. The non-cortical nuclear masses and certain pertiment fiber connections. J Comp Neurol, 65: 603–711.
  • 14. Jagalska-Majewska H, Dziewiątkowski J, Wójcik S, Luczyńska A, Kurlapska R, Moryś J (2001) The amygdaloid complex of the rabbit — a morphological and histochemical study. Folia Morphol, 60: 259–280.
  • 15. Johnson TN (1957a) Studies on the brain of a guinea pig. I. The nuclear pattern of certain basal telencephalic centers. J Comp Neurol, 107: 353–477.
  • 16. Johnson TN (1957b) The olfactory centers and connections in the cerebral hemisphere of the mole (Scalonus aquaticus machrinus). J Comp Neurol, 107: 379–425.
  • 17. Kamal AM, Tombol T (1975) Golgi studies on the amygdaloid nuclei of the cat. J Hirnforsch, 16: 175–201.
  • 18. Kevetter GA, Winans SS (1981) Connections of the Corticomedial Amygdala in the Golden Hamster. I. Efferents of the “Vomeronasal Amygdala”. J Comp Neurol, 197: 81–98.
  • 19. Kevetter GA, Winans SS (1981) Connections of the Corticomedial Amygdala in the Golden Hamster. II. Efferents of the “Olfactory Amygdala”. J Comp Neurol, 197: 99–111.
  • 20. Kowiańska J (1997) Anatomia porównawcza przedmurza wybranych gatunków ssaków. PhD Thesis, Medical University, Gdańsk, pp. 1–107.
  • 21. Krettek JE, Price JL (1978b) A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections. J Comp Neurol, 178: 255–280.
  • 22. LeDoux JE, Farb C, Ruggiero DA (1990b) Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J Neurosci, 10: 1043–1054.
  • 23. LeDoux JE, Cicchetti P, Xagoranis A, Romanski LM (1990a) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci, 10: 1062–1069.
  • 24. LeDoux JE, Farb C, Ruggiero DA (1991) Overlapping projections to the amygdala and striatum from auditory processing areas of the thalamus and cortex. Neurosci Lett, 134: 139–144.
  • 25. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci, 23: 155–184.
  • 26. Mayhew TM (1992) A review of recent advances in stereology for quantifying neural structures. J Neurocytol, 21: 313–328.
  • 27. Majidishad P, Pelli DG, LeDoux JE (1996) Disruption of fear conditioning to contextual stimuli but not to a tone by lesions of the accessory basal nucleus of the amygdala. Soc. Neurosci. Abstr. 22: 1116.
  • 28. Maren S, Fanselow MS (1995) Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation in vivo. J Neurosci, 15: 7548–7564.
  • 29. Mascagni F, McDonald AJ, Coleman JR (1993) Corticoamygdaloid and corticocortical projections of the rat temporal cortex: a Phaseolus vulgaris leucoagglutinin study. Neuroscience, 57: 697–715.
  • 30. McDonald AJ (1985) Morphology of peptide-containing neurons in the rat basolateral amygdaloid nucleus. Brain Res, 338: 186–191.
  • 31. McDonald AJ, Jackson TR (1987) Amygdaloid connections with posterior insular and temporal cortical areas in the rat. J Comp Neurol, 262: 59–77.
  • 32. McDonald AJ, Pearson JC (1989) Coexistence of GABA and peptide immunoreactivity in non-pyramidal neurons of the basolateral amygdala. Neurosci. Lett, 100: 53–58.
  • 33. McDonald AJ, Mascagni F, Guo L (1996) Projections of the medial and lateral prefrontal cortices to the amygdala: A Phaselous vulgaris leucoaggulutinin study in the rat. Neuroscience, 71: 55–75.
  • 34. Mcdonald AJ (1996) Glutamate and aspartate immunoreactive neurons of the rat basolateral amygdala: colocalization of excitatory amino acids and projections to the limbic circuit. J Comp Neurol, 365: 367–379.
  • 35. McDonald AJ, Mascagni F (2001) Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience, 105: 681–693.
  • 36. Maksymowicz K (1963) Amygdaloid complex of the dog. Acta Biol. exp. Vars, 23: 63–73.
  • 37. Morgane PJ, McFarland WL, Jacobs MS (1982) The limbic lobe of the Dolphin brain: A quantitative cytoarchitectonic study. J. Hirnforsch, 23: 465–552.
  • 38. Moga MM, Gray TS (1985) Peptidergic efferents from the intercalated nuclei of the amygdala to the parabrachial nucleus in the rat. Neurosci Lett, 61: 13–18.
  • 39. Moryś J, Berdel B, Jagalska-Majewska H, Luczynska A (1999) The basolateral amygdaloid complex — its development, morphology and functions. Folia Morphol, 58: 29–46.
  • 40. Pare D, Smith Y (1993) Distribution of GABA immunoreactivity in the amygdaloid complex of the cat. Neuroscience, 57: 1061–1076.
  • 41. Pitkänen A, Amaral DG (1994) The distribution of GABA-ergic cells, fibers, and terminals in the monkey amygdaloid complex: An immunohistochemical and in situ hybridization study. J Neurosci, 14: 2200–2224.
  • 42. Pitkänen A, Jolkkonen E, Kemppainen S (2000) Anatomical heterogeneity of the rat amygdaloid complex. Folia Morphol, 59: 1–23.
  • 43. Rohlf FJ, Slice DE (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zool, 39: 40–59.
  • 44. Rohlf FJ (1999) Shape statistics: Procrustes superimpositions and tangent spaces. J Classification, 16: 197–223.
  • 45. Romanski LM, LeDoux JE (1993) Information cascade from primary auditory cortex to the amygdala: Corticocortical and corticoamygdaloid projections of temporal cortex in the rat. Cereb Cortex, 3: 515–532.
  • 46. Równiak M, Szteyn S, Robak A (2004) The morphometric study of the amygdala in the common shrew. Folia Morphol, 63: 165–176.
  • 47. Równiak M (2002) Cytoarchitektonika i analiza jąder ciała migdałowatego u wybranych gatunków ssaków łożyskowych. PhD Thesis, Medical University of Gdańsk, pp. 1–95.
  • 48. Salmenperä T, Kälviäinen R, Partanen K (2000) MRI volumetry of the hippocampus, amygdala, entorhinal cortex, and perirhinal cortex after status epilepticus. Epilepsy Res, 40: 155–170.
  • 49. Salter CF (1975) A morphological study of the lateral olfactory areas of the telencephalon in the Mongolian Gerbil, Meriones unguiculatus. J Hirnforsh, 16: 223–244.
  • 50. Stephan H, Andy OJ (1977) Quantitative comparisons of the amygdala in insectivores and primates Acta Anat, 98: 130–153
  • 51. Stephan H, Frahm H, Baron G (1981a) New and revised data on volumes of brain structures in insectivores and primates Folia Primatol, 35: 1–29
  • 52. Stephan H, Frahm H, Baron G (1987) Comparisons of brain structure volumes in insectivora and primates. VII Amygdaloid body J Hirnforsh, 28: 571–584
  • 53. Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci, 21: 323–31.
  • 54. Śmiałowski A (1965) Amygdaloid complex of the macaque. Acta Biol. Exp Vars, 25: 77–89.
  • 55. Turner BH, Zimmer J (1984) The architecture and some of the interconnections of the rat’s amygdala and lateral periallocortex. J Comp Neurol, 227: 540–557.
  • 56. West MJ, Gundersen HJG (1990) Unbiased sterological estimation of the number of neurons in the human hippocampus. J Comp Neurol, 296: 1–22.
  • 57. Young MW (1936) The nuclear pattern and fiber connections of the non-cortical centers of the telencephalon of the rabbit (Lepus cuniculus). J Comp Neurol, 65: 295–401.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5b0d60c1-ac0d-4a96-b6ed-fc82b0aab007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.