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The physiological role of bradykinin (BK) as a mesenteric vasoregulator was 
explored. This nonapeptide is a potent vasodilator substance when administered 
exogenously in multiple in vivo models and is a smooth muscle relaxant when added 
to in vitro preparations. BK is naturally occurring in the gut wall. The substrate for 
BK, as well as the biosynthetic and metabolizing systems are present in the blood, 
the vascular wall, immunological cells, and perivascular neurons. BK B, and B, 
receptors have been characterized with sympathetic agonist and antagonist 
substances, and the receptors, are present on mesenteric endothelial cells and 
myocytes. BK interacts with multiple endogenous mesenteric vasodilator mediators, 
such as nitric oxide, prostacyclin, and neuropeptides. Taken together this evidence 
supports the functional importance of BK as a normal vasodilator in the gut. 
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Bradykinin (BK) is a nonapeptide (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) 
synthesized by the action of serine proteases, the kallikreins, on precursor 
proteins, the kininogens (1). Kallikreins are present in most tissues as well as in 
the plasma, neutrophils, and other body fluids (2), and different kininogens are 

present in the blood (3). Plasma kallikrein forms BK from a high molecular 
weight form of kininogen which is also blood borne (2). Additionally, 
kallikreins have been found in much of the vascular wall with higher 

concentrations in small vessels (4, 5). Protein synthesis in vascular smooth 

muscle is utilized to maintain a pool of kallikreins (4), and there is mRNA 

coding for the enzymes in vascular tissue (6). 
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The major BK degrading enzyme in plasma is angiotensin coverting 

enzyme (7—11). Other enzyme systems which may be involved in hydrolyzing 

BK include carboxypeptidase A and N and aminopeptidase P (11-13). 

Furthermore, mesenteric endothelium removal does not abolish angiotensin 
converting enzyme activity (14). 

Thus, the circulation contains both the biosynthetic and the metabolic 

systems needed to generate and to hydrolyse BK. These systems are present in 

both the blood and the vascular wall. Furthermore, BK also interacts with the 

vascular endothelium, with immunological cells in the interstitium, and with 
nerve cells to cause release of multiple vasodilator mediators (2). Some other 

important effects of BK include inflammation, hypotension, increased 

microvascular permeability, stimulation of chloride and glucose transport and 
activation of phospholipase A, (2). 

The vasodilator response to BK may be due to some combination of the 
following suggested mechanisms: endothelial NO production and guanosine 
3’,5’ monophosphate accumulation (15, 16), endothelial prostanoid generation 
(17—19), endothelium dependent but NO independent vascular muscle 
hyperpolarizing factor (20—23), inhibition of sympathetic nerve release of 

norepinephrine (24), neuronal release of vasodilator peptide neurotransmitters, 
such as calcitonin gene-related peptide and substance P (25—28), stimulation 

of beta adrenoceptors via adrenal medullary release of catecholamines (29), 
and formation of intracellular inositol phosphates (17, 19). 

| BK influences cellular function by binding to receptor subtypes located on 

the cell surface (1,30— 33). Identification of BK B, and B, subtypes is based 
primarily upon the relative potency of various agonists and antagonists 
(1, 30, 33—37), although a human BK B, receptor has been sequenced and 

cloned (32). The B, receptor is the predominant physiological mediator of the 
fundamental vascular actions of BK (1, 2, 34, 38, 39). Thus, BK B, receptor 

antagonism prevented the BK induced rapid increase in intracellular calcium 
(Ca**) and the release of nitric oxide (NO) from endothelial cells 
(40 —43). Other basic cellular actions of BK have included increasing second 
messengers such as guanosine 3’5’ cyclic monophosphate (16, 41, 44), inositol 
1,4,5-triphosphae (19, 45, 46), and prostaglandins (19, 44, 45, 47—51), as well 
as interacting with angiotensin converting enzyme (9). 

In early studies it was found that exogenously administered BK was 
a general vasodilator agent (52) and BK was specifically shown to dilate the 
circulations of the stomach (53), pancreas (54), and gut (55). BK vasodilation 
of the in vivo mesenteric circulation was documented repeatedly in human 
(56—59) and several animal (29, 55, 60—68) models. Accordingly, 
intra-arterial BK evoked visible arterial dilation and angiographic evidence of 
enhanced blood flow in the human mesenteric circulation (57, 59). BK also 
increased human and canine portal vein caliber and pressure (56, 59, 69),
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probably as a result of arterial vasodilation and augmented intestinal blood 

flow. In the anesthetized rat model intra-arterial BK increased mesenteric 

blood flow (60, 61, 65, 66, 67, 70), and the dilator effect was mediated by BK 

B, receptors and NO (67). Additional rat studies documented that some but 

not all of the splanchnic vasodilator actions of BK were mediated by NO (15, 

61, 71—74). Thus, there were findings that endothelial prostaglandin synthesis 

also contributed to the BK induced vascular relaxation (18, 75—78). In 

anesthetized dogs (59, 63, 79), cats (80), and calves (81) BK also increased 

mesenteric arterial inflow, portal vein diameter, and/or splanchnic venous 

pressure. BK elicited release of the potent vasodilator neurotransmitter, 

calcitonin gene-related peptide, from the mesenteric circulation of rats 

(25 — 28), prompted adrenal medullary stimulation of beta adrenoceptors (29), 

and inhibited norepinephrine release (24). 

BK infusion either evoked dilator responses or antagonized norepinephrine 

induced constrictor responses in rat (10, 82—85), cat (62, 86), and rabbit (47) 

isolated perfused gut preparations. In isolated mesenteric vascular strips or 

rings, BK was a potent relaxing agent (15, 39, 87—91). 

In cultured endothelial cells from human (40, 45, 92), porcine (31, 41), and 

bovine (42, 45, 48) aortae or umbilical veins, BK binding to the B, subtype 

receptor evoked an abrupt accumulation of cytosolic [Ca”*] (92). This Ca?* 

accumulation was probably mediated by a G-protein at the endothelial cell 

surface with consequent opening of plasma membrane Ca?* channels (31). 

The increased cytosolic Ca? * would then activate NO synthase and lead to NO 

release from endothelial cells which would relax adjacent vascular smooth 

muscle cells (31, 40—42, 48, 61, 71, 93—97). In addition, BK was shown to 

release vasodilator prostaglandins (50, 51) and prostacyclin (45, 48) from 

cultured endothelial cells and vascular myocytes. BK also released NO from 

vascular smooth muscle (73) and nerve (96) cells. The multiple mechanisms 

involved in BK induced vasodilation are depicted in Fig. 1. 

Topically applied BK relieved norepinephrine induced vasoconstriction of 

rat mesenteric microvessels under microscopic observation (97, 98). BK 

released adrenal medullary catecholamines via a Ca** dependent mechanism 

(99, 100); however, this effect did not attenuate BK induced mesenteric 

vasodilation (29). | 

The mesenteric vasodilator response to BK was abolished in glucopenic 

animals and was restored by administering insulin (97, 98), suggesting that BK 

induced relaxation of blood vessels depends upon either intracellular glucose 

or insulin. In mice, BK stimulated release of tumor necrosis factor and 

interleukin-1 from macrophages (101). The BK-cytokine interaction may be 

mediated by BK B, receptors which are known to be induced by interleukin-1 

and endotoxin (1, 34). Furthermore, interleukin-1 induced NO production in 

vascular smooth muscle (102).
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Fig. 1. Mechanisms by which BK  elicts mesenteric vasodilation. Abbreviations: 
HF = hyperpolarizing factor, PGI; = prostacyclin, NO="nitric oxide, CGRP = calcitonin 
gene-related peptide, SP = substance P, SYMP = sympathetic nerves, NE = norepinephrine. 

There is also some evidence against BK acting as a physiological 
vasodilator agent in the enteric circulation. Thus, in conscious rats with 
chronic catheterization of systemic vessels, low doses of BK diminished 
mesenteric blood flow (103). In addition, in the norepinephrine precontracted 
rat mesenteric circulation, low doses of BK either contracted (104) or did not 
relax (105) the intestinal vasculature. 

In isolated perfused preparations BK released dilator eicosanoids (44, 45, 
47, 48, 50, 51), although there are conflicting reports about prostaglandin 
mediation of BK induced intestinal vasodilation (60). Indomethacin was 
shown to inhibit BK induced mesenteric relaxation of rabbit mesenteric vessels 
(87, 89, 106), whereas indomethacin was ineffective in mitigating BK evoked 
relaxation of rat mesenteric vascular rings (85). In guinea pig gut BK 
contracted mesenteric veins via its B, receptors (107), and in rabbits BK 
vascular relaxation was blocked by a B, receptor antagonist (108). BK proved 
to be a less potent relaxant of rabbit mesenteric arterial rings than either 
kallidin (88) or DesArg-BK (89, 108). In non mesenteric vascular ring 
preparations BK caused a contractile response from endothelium denuded 
rabbit vessels which was mediated by B, receptors and intracellular bound 
Ca?* release (108). 

The foregoing discussion suggests that the physiological role of BK and the 
mechanisms of its vasoactivity vary between animal species and experimental
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preparations. However, the bulk of evidence supports a physiological role for 

BK as a paracrine vasodilator in the gut. Information which ranges from 

suggestive to convincing provides several essential features upon which this 

conclusion is based: 

e BK is released by cells located near vascular smooth muscle, namely 

endothelial, immunological, and neural cells; 

e The biosynthetic and metabolizing machinery is present in the mesenteric 

vasculature to regulate BK availability; 
e BK B, and B, receptors are located on the surface of mesenteric 

endothelial cells and myocytes; 
e BK interacts with other endogenous vasodilator mediators, e.g., NO, 

prostacyclin, neuropeptides, beta adrenoceptors; and 
e Exogenously administered BK is a potent mesenteric vasodilator agent. 
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