PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 15 | 2 |

Tytuł artykułu

Encounter rates in zooplankton

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The influence of turbulence (turbulent kinetic energy dissipation) on predator-prey interactions in zooplankton is discussed with respect to the combined effect of the choice of the turbulent length scale, and size and velocity of predator and prey concentration on the encounter rate. The significance of correct scaling to the turbulent encounter velocity is demonstrated, with three different definitions being considered: the average prey separation, the Kolmogorov scale, and the predator's reactive distance. Numerical investigations using these different definitions of scale were carried out to find the convergence conditions and the behaviour of the scale values for 5-10 mm fish larvae which feed off copepod nauplii in the 10⁴-10⁵ m⁻³ concentration range. The choice of the turbulent length scale is not important for small predator body sizes <5mm and high prey concentrations in the 10⁷-10⁸ m⁻³ range, which are reasonable prey densities for a 1-3 mm copepod (i.e. algae and protozoans). Also in the quasi-laminar regime of water flow (l=2πη) and high prey concentrations, the choice of correct scaling is not important. Predators of any body size will forage in such a regime immovably (swimming velocity v ≈0). However, for large larval lengths >10 mm and prey concentrations <10⁶ m⁻³, the scale can be defined as the average prey separation or as the predator's reactive distance. The effect of turbulence on the encounter rate decreases with the increasing size and velocity of the predator and with prey concentration. A simple one-dimensional prey-predator ecosystem model in the upper mixed layer is presented, which examines the relative importance of turbulence to growth in planktonic consumers. This effect is less for low prey densities <10⁴ m⁻³, when the initial predator biomass and constant growth rate term have a decisive influence. However, the effect of turbulence on the characteristics investigated increases with rising prey density, in which case the controlling factor is encounter rate and in the case of prey concentration, diurnal migration.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

2

Opis fizyczny

p.243-257,fig.,ref.

Twórcy

  • Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland

Bibliografia

  • 1. ROTHSCHILD B.J., OSBORN T.R. Small-scale turbulence and plankton contact rates. J. Plankton Res. 10, 465, 1988.
  • 2. MACKENZIE B.R., MILLER T.J., CYR S., LEGGETT W.C. Evidence for a dome shaped relationship between turbulence and larval fish ingestion rates. Limnol. Oceanogr. 39, 1790, 1994.
  • 3. DOWER J., MILLER T.J., LEGGETT W.C. The role of microscale turbulence in the feeding ecology of larval fish. Adv. Marine Biol. 31, 169, 1997.
  • 4. SUNDBY S., FOSSUM P. Feeding conditions of Arcto-Norwegian cod larvae compared with the Rothschild-Osborn theory on small-scale turbulence and plankton contact rates. J. Plankton Res. 12, 1153, 1990.
  • 5. DAVIS C.S., FLIERL G.R., WIEBE P.H., FRANKS P.J.S. Micropatchiness, turbulence and recruitment in plankton. J. Mar. Res. 49, 110, 1991.
  • 6. MACKENZIE B.R., LEGGETT W.C. Quantifying the contribution of small-scale turbulence to the encounter rates between larval fish and their zooplankton prey: effects of wind and tide. Mar. Ecol. Prog. Ser. 73, 149, 1991.
  • 7. KIØRBOE T., SAIZE E. Planktivorous feeding in calm and turbulent environments with emphasis on copepods. Mar. Ecol. Prog. Ser. 122, 135, 1995.
  • 8. CAPARROY P., CARLOTTI F. A model for Acartia tonsa: effect of turbulence and consequences for the related physiological processes. J. Plankton Res. 18, 2139, 1996.
  • 9. BROWMAN H.I., SKIFTESVIK A.B. Effects of turbulence on the predation cycle of fish larvae: comments on some of the issues. Mar. Ecol. Prog. Ser. 139, 309, 1996.
  • 10. EVANS G.T. The encounter speed of moving predator and prey. J. Plankton Res. 11, 415, 1989.
  • 11. YAMAZAKI H., OSBORN T.R., SQUIRES K.D. Direct numerical simulation of planktonic contact in turbulent flow. J. Plankton Res. 13, 629, 1991.
  • 12. SEURONT L., SCHMITT F., LAGADEUC Y. Turbulence intermittency, small-scale phytoplankton patchiness and encounter rates in plankton: where do we go from here? Deep Sea Res. I 48, 1199, 2001.
  • 13. LOUGH R.G., MOUNTAIN D.G. Effect of small-scale turbulence on feeding rates of larval cod and haddock in stratified water on Georges Bank. Deep-Sea Res. II 43, 1745, 1996.
  • 14. GERRITSEN J., STRICKLER J.R. Encounter probabilities and community structure in zooplankton: a mathematical model. J. Fish Res. Bd. Can. 34, 73, 1977.
  • 15. MACKENZIE B.R., KIØRBOE T. Turbulence-enhanced prey encounter rates in larval fish: effects of spatial scale, larval behaviour and size. J. Plankton Res. 17, 2319, 1995.
  • 16. LAURENCE G.C. A raport on the development of stochastic models of food limited growth and survival cod and haddock larvae. In: LAURENCE G.C., LOUGH R.G. (Eds.) Growth and survival of larval fish in relation to the trophodynamics of Georg Bank cod and handdock. NOAA Technical Memorandum NMFS F/NEC-36, Woods Hole, MA, pp. 83-150, 1985.
  • 17. MILLER T.J., CROWDER L.B., RICE J.A., MARSHALL E.A. Larval size and recruitment mechanisms in fishes: toward a~conceptual framework. Can. J. Fish. Aquat. Sci. 45, 1657, 1988.
  • 18. KIØRBOE T., VISSER A.W. Predator and prey perception in copepods due to hydromechanical signals. Mar. Ecol. Prog. Ser. 179, 81, 1999.
  • 19. JACKSON G.A., LOCHMANN S. Modelling coagulation of algae in marine ecosystems. In: BUFFLE J., VAN LEEUWEN H.P. (Eds.), Environmental Analytical and Physical Chemistry Series, 2, Environmental Particles. Lewis Publishers, Boca Raton, pp. 387-414, 1993.
  • 20. DELICHATSIONS M.A., PROBSTEIN R.F. Coagulation in turbulent flow: theory and experiment. J. Coll. Interf. Sci. 51, 394, 1975.
  • 21. HILL P.S., NOWELL A.R.M., JUMARS P.A. Encounter rate by turbulent shear of particles similar in diameter to the Kolmogorov scale. J. Mar. Res. 50, 643, 1992.
  • 22. KIØRBOE T. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. Mar. Biol. 29, 1, 1993.
  • 23. SUNDBY S., ELLERTSEN B., FOSSUM P. Encounter rates between first-feeding cod larvae and their prey during moderate to strong turbulence. ICES Mar. Sci. Symp. 198, 393, 1994.
  • 24. SUNDBY S. Wind climate and foraging of larval and juvenile Arcto-Norwegian cod (Gadus morhua L). Can. Spec. Publ. J. Aquat. Fish Sci. 121, 405, 1995.
  • 25. GALLAGHER B.R., BURDICK J.E. Mean separation distance of organisms in three dimensions. Ecology 51, 538, 1970.
  • 26. MUELBERT J.H., LEWIS M.R., KELLEY D.E. The importance of small-scale turbulence in the feeding of herring larvae. J. Plankton Res. 16, 927, 1994.
  • 27. DENMAN K.L., GARGETT A.E. Biological-physical interactions in the upper ocean: the role of vertical and small scale transport processes. Annu. Rev. Fluid Mech. 27, 225, 1995.
  • 28. LEWIS D.M., PEDLEY T.J. Planktonic contact rates in homogeneous isotropic turbulence: theoretical predictions and kinematic simulations. J. Theor. Biol. 205, 377, 2000.
  • 29. MANN J., OTT S., PÈCSELI H.L., TRULSEN J. Predator- prey encounters in turbulent waters. Phys. Rev. E 65, 026304/1-4, 2002.
  • 30. YOUNG I.R., BANNER M.L. Modelling of finite depth wind wave dissipation, ONR Report, 2001, WWW Page http:/www.onr.navy.mil/scitech/ocean/reports/dos/cd/01/cdyoun02.pdf, 2001
  • 31. MASSEL S.R. Ocean surface waves: their physics and prediction. Ad. Ser. Ocean Engineering, 11. World Scientific Publ. Singapore, 1996.
  • 32. DZIERZBICKA-GŁOWACKA L. Mathematical modelling of the biological processes in the upper layer of the sea. Diss and monogr 13, Institute of Oceanology PAS, Sopot (in Polish), 2000.
  • 33. DZIERZBICKA-GŁOWACKA L. A numerical investigation of phytoplankton and Pseudocalanus elongatus dynamics in the spring bloom time in the Gdańsk Gulf. J. Marine Sys. 53, 19, 2005.
  • 34. MACKENZIE B.R., KIRBOE T. Larval fish feeding and turbulence: A case for the downside. Limnol. Oceanogr. 45, 1, 2000.
  • 35. OSBORN T.R. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10, 83, 1980.
  • 36. GREGG M.C. Scaling turbulent dissipation in the thermohaline. J. Geophys. Res. 94, 9684, 1989.
  • 37. BURCHARD H. On the q²¹ equation by Mellor and Yamada [1982]. J. Phys. Oceanogr. 31, 1377, 2001.
  • 38. JANKOWSKI A. Matematical modeling of water circulation in the Baltic Sea. Ossolineum, Polish Academy of Sciences, pp. 1-275, 1988.
  • 39. SKIVESFIK A.B., HUSE I. Behaviour studies of cod larvae, Gadus morhua L. Sarsia 72, 367, 1987.
  • 40. WITEK Z. Biological production and its utilization within a marine ecosystem in the western Gdańsk Basin. Sea Fisheries Institute, Gdynia, Poland, pp. 1-145, 1995.
  • 41. CISZEWSKI P., WITEK Z. Production of older stages of copepods Acartia bifilosa Giesb. and Pseudocalanus elongatus Boeck in Gdansk Bay. Pol. Arch. Hydrobiol. 24 (4), 449, 1977.
  • 42. DZIERZBICKA-GŁOWACKA L. Growth and development of copepodite stages of Pseudocalanus spp. J. Plankton Res. 26, 49, 2004a.
  • 43. DZIERZBICKA-GŁOWACKA L. The dependence of body weight in copepodite stages of Pseudocalanus spp. on variations of ambient temperature and food concentration. Oceanologia 46, 45, 2004b.
  • 44. CARLOTTI F., RADACH G. Seasonal dynamics of phytoplankton and Calanus finmarchicus in the North Sea as revealed by a coupled one-dimensional model. Limnol. Oceanogr. 41, 522, 1996.
  • 45. PAFFENHÖFER G.A. Grazing and ingestion rates of nauplii, copepodids and adults of the marine planktonic copepod Calanus helgolandicus. Mar. Biol. 11, 286, 1971.
  • 46. STEELE J.H., MULLIN M.M. Zooplankton dynamics. In: GOLDBERG E.D., MCCAVE I.N., O’BRIEN J.J., STEELE J.H. (Eds.) The sea, 6. Interscience Publ. New York, London, Sydney, Toronto, 1977.
  • 47. STEELE J.H. The Structure of Marine Ecosystems. Harvard University Press, Cambridge, 1974.
  • 48. DZIERZBICKA-GŁOWACKA L., ZIELIŃSKI A. Potential rate of reproduction for some geographically separate populations of Pseudocalanus spp. Oceanologia 46, 65, 2004.
  • 49. RENK H., OCHOCKI S., PYTEL H. Short-term variations of primary production and chlorophyll in the Gdańsk Deep. Pol. Ecol. Stud. 9, 341, 1983.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-56b43d71-b967-4fe0-85a9-6bd64c118f83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.