PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 17 | 5 |

Tytuł artykułu

Application of near infrared spectroscopy for analysis of soils, litter and plant materials

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Environmental studies often require analyses of numerous chemical, physical and biological properties in large numbers of soil, litter and plant samples. Such analyses may be expensive and time consuming and therefore rapid and cost-effective methods may be required. Near infrared spectroscopy (NIRS) is a nondestructive analytical method known for rapidity, simplicity and low costs, which could be used along with classical analytical methods in order to improve efficiency of large-scale environmental research. In this review, principals of NIRS are described, examples of NIRS applications are presented and the possibilities and limitations of the method are discussed.

Wydawca

-

Rocznik

Tom

17

Numer

5

Opis fizyczny

p.631-642,ref.

Twórcy

autor
  • AGH University of Science and Technology, Al.Mickiewicza 30, 30-056 Krakow, Poland

Bibliografia

  • 1. NORRIS K.H., BARNES R.F., MOORE J.E., SHENK J.S. Predicting forage quality by near-infrared reflectance spectroscopy. J. Anim. Sci. 43, 889, 1976.
  • 2. OSBORNE B.G., FEARN T. Near Infrared Spectroscopy in Food Analysis. Longman Scientific and Technical, Essex, 1986.
  • 3. SHENK J.S., WESTERHAUS M.O. The application of near ifrared spectroscopy (NIRS) to forage analysis. National conference on forage quality evaluation and utilization. Am. Soc. Agron., Madison, pp 406 – 449, 1994.
  • 4. AOAC. Official Methods of Analysis. Association of analytical Chemists, Washington, 1990.
  • 5. MALLEY D., MARTIN P., BEN-DOR E. Application in analysis of soils. In: Craig, R, Windham, R., Workman J. (Eds), Near Infrared Spectroscopy in Agriculture. A Three Society Monograph (ASA, SSSA, CSSA) Madison, WI, pp 729 – 784, 2004.
  • 6. MARTENS H., NÆS T. Multivariate calibration. John Wiley & Sons Ltd. Guildford, Great Britain, 1989.
  • 7. NÆS T., ISAKSSON T., FEARN T., DAVIES T. A user friendly guide to multivariate calibration and classification. NIR Publications, Chichester, UK. 2002.
  • 8. WORKMAN Jr J.J. A brief review of the near infrared measurement technique. NIR news 4, 8, 1993.
  • 9. WORKMAN J. Handbook of Organic Compounds: NIR, IR, Raman, and UV-Vis Spectra Featuring Polymers and Surfactants. Vol 1, Academic Press, pp 77 – 197, 2000.
  • 10. FOLEY W.J., MCILWEE A., LAWLER I., ARAGONES L., WOOLNOUGH A.P., BERDING N. Ecological applications of near infrared reflectance spectroscopy – a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance. Oecologia 116, 293, 1998.
  • 11. CASLER M.D., SHENK J.S. Effect of sample grinding on forage quality estimates of smooth bromegrass clones. Crop Sci. 25, 167, 1985.
  • 12. SHENK J.S., WESTERHAUS M.O. Population definition, sample selection, and calibration procedure for near infrared reflectance spectroscopy. Crop Sci. 31, 469, 1991.
  • 13. COÛTEAUX M.M., MCTIERNAN K.B., BERG B., SZUBERLA D., DARDENNE P., BOTTNER P. Chemical composition and carbon mineralization potential of Scots pine needles at different stages of decomposition. Soil Biol. Biochem. 30, 583, 1998.
  • 14. LUDWIG B., KHANNA P.K. Use of near infrared spectroscopy to determine inorganic and organic carbon fractions in soil and litter. In: Assessment Methods for soil Carbon. Advances in Soil Science. pp 361 – 370, 2001.
  • 15. COÛTEAUX M.M., BERG B., ROVIRA P. Near infrared reflectance spectroscopy for determination of organic matter fractions including microbial biomass in coniferous forest soils. Soil Biol. Biochem. 35, 1587, 2003.
  • 16. WOLD S., SJÖSTRÖM M., ERIKSSON L. PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109, 2001.
  • 17. CHANG C.W., LAIRD D.A., MAUSBACH M.J., HURBURGH C.R. Near infrared reflectance spectroscopy – principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 65, 480, 2001.
  • 18. BROWN D.J., BRICKLEMYER R.S., MILLER P.R. Validation requirements for diffuse reflectance soil characterization models with case study of VNIR soil C prediction in Montana. Geoderma 129, 251, 2006.
  • 19. MARTENS H.A., DARDENNE P. Validation and verification of regression in small data sets. Chemom. Intell. Lab. Syst. 44, 99, 1998.
  • 20. ELVIDGE C.D. Visible and near infrared reflectance characteristics of dry plant materials. Int. J. Remote Sens. 11, 1775, 1990.
  • 21. CURRAN P.J., DUNGAN J.L., MACLER B.A., PLUMMER S.E., PETERSON D.L. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote Sens. Environ. 39, 153, 1992.
  • 22. BEN-DOR E., INBAR Y., CHEN Y. The reflectance of organic matter in the visible near-infrared and short wave infrared region (400-2500 nm) during a controlled decomposition process. Remote Sens. Environ. 61, 1, 1997.
  • 23. SHENK J.S., WESTERHAUS M.O. Monograph: analysis of agriculture and food products by near-infrared reflectance spectroscopy. Infrasoft; Port Matilda. 1993.
  • 24. DALAL R.C., HENRY R.J. Simultaneous determination of moisture, organic carbon and total nitrogen by near infrared spectroscopy. Soil Sci. Soc. Am J. 50, 120, 1986.
  • 25. MORRA M.J., HALL M.H., FREEBORN L.L. Carbon and nitrogen analysis of soil fractions using near-infrared spectroscopy. Soil Sci. Soc. Am. J. 55, 288, 1991.
  • 26. BEN-DOR E., BANIN A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J. 59, 364, 1995.
  • 27. SALGÓ A., NAGY J., TARNOY J., MARTH P., PÁLMAI O., SZABÓ-KELE G. Characterisation of soils by the near infrared technique. J. Near Infr. Spect. 6, 199, 1998.
  • 28. FYSTRO G. The prediction of C and N content and their potential mineralisation in heterogenous soil samples using Vis-NIR spectroscopy and comparative methods. Plant Soil 246, 139, 2002.
  • 29. LUDWIG B., KHANNA P.K., BAUHUS J., HOPMANS P. Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability. For. Ecol. Manage. 171, 121, 2002.
  • 30. MCCARTY G.W., REEVES J.B., REEVES V.B., FOLLET R.F., KIMBLE J.M. Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Sci. Soc. Am. J. 66, 640, 2002.
  • 31. CHODAK M., KHANNA P., BEESE F. Hot water extractable C and N in relation to microbiological properties of soils under beech forests. Biol. Fertil. Soils 39, 123, 2003.
  • 32. COZZOLINO D., MORÓN A. Potential of near-infrared reflectance spectroscopy and chemometrics to predict soil organic carbon fractions. Soil Till. Res. 85, 78, 2006.
  • 33. GILLON D., HOUSSARD C., JOFFRE R. Using nearinfrared reflectance spectroscopy to predict carbon, nitrogen and phosphorus content in heterogeneous plant material. Oecologia 118, 173, 1999.
  • 34. CHODAK M., LUDWIG B., KHANNA P., BEESE F. Use of near infrared spectroscopy to determine biological and chemical characteristics of organic layers under spruce and beech stands. J. Plant Nutr. Soil Sci. 165, 27, 2002.
  • 35. MALLEY D.F., WILLIAMS P.C., STAINTON M.P. Rapid measurements of suspended C, N and P from Precambrian shield lakes using near-infrared reflectance spectroscopy. Water Res. 30, 1325, 1996.
  • 36. MALLEY D.F., HAUSER B.W., WILLIAMS P.C., HALL J. Prediction of organic carbon nitrogen and phosphorus in freshwater sediments using near infrared reflectance spectroscopy. In: Near Infrared spectroscopy: The Future Waves. NIR Publications: Chichester UK, pp 691-699, 1996.
  • 37. CHANG, CW., LAIRD D.A. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci. 167, 110, 2002.
  • 38. BRUUN S., STENBERG B., BRELAND T.A., GUDMUNDSON J., HENRIKSEN T.M., JENSEN L.S., KORSÆET A., LUXHØI J., PÁLMASON F., PEDERSEN A., SALO T. Empirical predictions of plant material C and N mineralization patterns from near infrared spectroscopy, stepwise chemical digestion and C/N ratios. Soil Biol. Biochem. 27, 2283, 2005.
  • 39. RUSSELL C.A., ANGUS J.F., BATTEN G.D., DUNN B.W., WILLIAMS R.L. The potential of NIR spectroscopy to predict nitrogen mineralization in rice soils. Plant Soil 247, 243, 2002.
  • 40. TERHOEVEN-URSELMANS T., KERSTIN M., HELFRICH M., FLESSA H., LUDWIG B. Near-infrared spectroscopy can predict the composition of organic matter in soil and litter. J. Plant Nutr. Soil Sci. 169, 168, 2006.
  • 41. VAN GROENINGEN J.W., MUTTERS C.S., HORWATH W.R., VAN KESSEL C. NIR and DRIFT-MIR spectrometry of soils for predicting soil and crop parameters in a flooded field. Plant Soil 250, 155, 2003.
  • 42. BÖRJESSON T., STENBERG B., LINDÉN B., JONSSON A. NIR spectroscopy, mineral nitrogen analysis and soil incubations for the prediction of crop uptake of nitrogen during growing season. Plant Soil 214, 75, 1999.
  • 43. STENBERG B., JONSSON A., BÖRJESSON T. Use of near infrared reflectance spectroscopy to predict nitrogen uptake by winter wheat within fields with high variability in organic matter. Plant Soil 269, 251, 2005.
  • 44. HENDERSON T.L., BAUMGARDNER M.F., FRANZMEIER D.P., STOTT D.E., COSTER D.C. High dimensional reflectance analysis of soil organic matter. Soil Sci. Soc. Am. J. 56, 865, 1992.
  • 45. MARTIN M.E., ABER J.D. Analyses of forest foliage III: Determining nitrogen, lignin and cellulose in fresh leaves using near infrared reflectance data. J. Near Inf. Spect. 2, 25, 1994.
  • 46. MCLELLAN T.M., ABER J.D., MARTIN M.E., MELILLO J.M., NADELHOFFER K.J. Determination of nitrogen, lignin, and cellulose content in decomposing leaf material by near infrared reflectance spectroscopy. Can. J. For. Res. 21, 1684, 1991.
  • 47. JOFFRE R., GILLON D., DARDENNE P., AGNEESENS R., BISTON R. The use of near-infrared spectroscopy in litter decomposition studies. Ann. Sci. For. 49, 481, 1992.
  • 48. GILLON D., JOFFRE R., DARDENNE P. Predicting stage of decay of decomposing leaves by near infrared reflectance spectroscopy. Can. J. For. Res. 23, 2252, 1993.
  • 49. GILLON D., JOFFRE R., IBRAHIMA A. Can litter decomposability be predicted by near infrared reflectance spectroscopy? Ecology 80, 175, 1999.
  • 50. GILLON D., DAVID J-F. The use of near infrared reflectance spectroscopy to study chemical changes in the leaf litter consumed by saprophagous invertebrates. Soil boil. Biochem. 33, 2159, 2001.
  • 51. COÛTEAUX MM., SARMIENTO L., HERVÉ D., ACEVEDO D. Determination of water-soluble and total extractable polyphenolics in biomass, necromass and decomposing plant materials using near –infrared reflectance spectroscopy (NIRS). Soil Biol. Biochem. 37, 795, 2005.
  • 52. BEN-DOR E., BANIN A. Near infrared analysis (NIR) as a method to simultaneously evaluate spectral featureless constituents in soils. Soil Sci. 159, 259, 1995.
  • 53. COZZOLINO D., MORÓN A. Exploring the use of near infrared reflectance spectroscopy (NIRS) to predict trace minerals in legumes. Anim. Feed Sci. Techn. 111, 161, 2004.
  • 54. CHODAK M., KHANNA P., HORWATH B., BEESE F. Near infrared spectroscopy for determination of total and exchangeable cations in geologically heterogeneous forest soils, J. Near Inf. Spect. 12, 315, 2004.
  • 55. SHEPHERD K.D., WALSH M.G. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci. Soc. Am. J. 66, 988, 2002.
  • 56. MORÓN A., COZZOLINO. D. Exploring the use of near infrared reflectance spectroscopy to study physical properties and microelements in soils. J. Near. Inf. Spect. 11, 145, 2003.
  • 57. KOOISTRA L., WEHRENS R., LEUVEN R.S.E.W., BUYDENS L.M.C. Possibilities of visible-near-infrared spectroscopy for the assessment of soil contamination in river floodplains. Anal. Chim. Acta 446, 97, 2001.
  • 58. SIEBIELEC G., MCCARTY G.W., STUCZYNSKI T.I., REEVES III J.B. Near- and Mid-infrared diffuse reflectance spectroscopy for measuring soil metal content. J. Environ. Qual. 33, 2056, 2004.
  • 59. MALLEY D.F. Near-infrared spectroscopy as a potential method for routine sediment analysis to improve rapidity and efficiency. Wat. Sci. Tech. 37, 181, 1998.
  • 60. PALMBORG C., NORDGREN A. Modelling microbial activity and biomass in forest soil with substrate quality measured using near reflectance spectroscopy. Soil Biol. Biochem. 25, 1713, 1993.
  • 61. PIETIKÄINEN J., FRITZE H. Clear–cutting and prescribed burning in coniferous forest: comparison of effects on soil fungal and total microbial biomass, respiration activity and nitrification. Soil Biol. Biochem. 27, 101, 1995.
  • 62. STENBERG B., NORDKVIST E., SALOMONSSON L. Use of near infrared reflectance spectra of soils for objective selection of samples. Soil Sci. 159, 109, 1995.
  • 63. ODLARE M., SVENSSON K., PELL M. Near infrared reflectance spectroscopy for assessment of spatial soil variation in an agricultural field. Geoderma 126, 193, 2005.
  • 64. HE Y., SONG H., PEREIRA A.G., GÓMEZ A.H. Measurement and analysis of soil nitrogen and organic matter content using near-infrared spectroscopy techniques. J. Zheijiang Univ. Sci. 6B, 1081, 2005.
  • 65. SUDDUTH K.A., HUMMEL J.W. Soil organic matter, CEC and moisture sensing with portable NIR spectrophotometer. Transactions of ASAE 36, 1571, 1993.
  • 66. STEVENS A., VAN WESEMAEL B., VANDENSCHRICK G., TOURÉ S., TYCHON B. Detection of carbon stock change in agricultural soils using spectroscopic techniques. Soil Sci. Soc. Am. J. 70, 844 , 2006.
  • 67. SELIGE T., BÖHNER J., SCHMIDHALTER U. High resolution topsoil mapping using hyperspectral image and field data in multivariate modeling procedures. Geoderma, 136, 235, 2006.
  • 68. FABER N.M., SCHREUTELKAMP F.H., VEDDER H.W. Estimation of prediction uncertainty for a multivariate calibration model. Spectrosc. Europe 16, 17, 2004.
  • 69. RUMPEL C., SKJEMSTAD M., H, KNICKER, I., KÖGEL-KNABER I., HÜTTL R.F. Techniques for the differentiation of carbon types present in lignite-rich mine soils. Org. Geochem 31, 543, 2000.
  • 70. CHODAK M., NIKLIŃSKA M., BEESE F. The use of near infrared spectroscopy to quantify lignite-derived carbon in humus-lignite mixtures. J. Near Infrared Spectrosc. 15, 195, 2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-532c5cf8-3649-4721-a78e-8feab744ba6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.