PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 60 | 4 |

Tytuł artykułu

ITF mapping after drugs of abuse: pharmacological versus perceptional effects

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Analysis of inducible transcription factors (ITFs) expression is often applied to map drug-induced changes of neuronal activity in brain. Administration of cocaine and alcohol induces ITFs in a large number of brain structures. However, induction of ITFs in a brain region does not necessarily indicate a pharmacological effect of the drug in this brain region. Many of the brain regions could be activated by secondary effects. Perception of stimulus properties of the drug or locomotor effects of the drug are possible secondary effects. Anesthesia can block induction of ITFs by cocaine and alcohol suggesting that ITF expression in a majority of brain regions is more sensitive to secondary effects than to pharmacological effects of these drugs. In agreement with this hypothesis is our finding that the majority of brain regions responding with ITF expression to alcohol administration do not respond to voluntary alcohol self-administration in animals. Only a few brain regions show similar ITF induction after both administration and self-administration of this drug. Presumably these brain regions could be responding to pharmacological effects of alcohol. Given the low resolution of invasive techniques, ITF mapping experiments will continually contribute to our understanding of mechanisms of drug addiction and alcoholism.

Wydawca

-

Rocznik

Tom

60

Numer

4

Opis fizyczny

p.547-555,fig.

Twórcy

autor
  • Oregon Health Sciences University L470, 3181 SW Sam Jackson Park Road, Portland, Oregon 97201, USA

Bibliografia

  • Bachtell R.K., Wang Y.-M., Freeman P., Risinger F.O., Ryabinin A.E. (1999) Alcohol drinking produces brain re­gion-selective changes in expression of inducible tran­scription factors. Brain Res. 847: 157-165.
  • Brown E.E., Robertson G.S., Fibiger H.C. (1992) Evidence for conditional neuronal activation following exposure to a cocaine-paired environment: Role of forebrain limbic structures. J. Neurosci. 12: 4112-4121.
  • Chang S.L., Patel N.A., Romero A.A. (1995) Activation and desensitization of Fos immunoreactivity in the rat brain fol­lowing ethanol administration. Brain Res. 679: 89-98.
  • Chang S.L., Squinto S.P., Harlan R.E. (1988) Morphine acti­vation of c-fos expression in rat brain. Biochem. Biophys. Res. Commun. 157: 698-704.
  • Chen J., Kelz M.B., Hope B.T., Nakabeppu Y., Nestler E.J. (1997) Chronic Fos-Related antigens: Stable variants of DFosB induced in brain by chronic treatments. J. Neurosci. 17: 4933-4941.
  • Cole A.J., Bhat R.V., Patt C., Worley P.F., Baraban J.M. (1992) D1 dopamine receptor activation of multiple tran­scription factor genes in rat striatum. J. Neurochem. 58: 1420-1426.
  • Conger J.J. (1956) Alcoholism; theory, problem and chal­lenge. II Reinforcement theory and the dynamics of alco­holism. Q. J. Stud. Alcohol 17: 296-305.
  • Cunningham C.L. (1981) Spatial aversion conditioning with ethanol. Pharmacol. Biochem. Behav. 14: 1-2.
  • Cunningham C.L., Niehus J.S., Noble D. (1993) Species dif­ference in sensitivity to ethanol's hedonic effects. Alcohol 10: 97-102.
  • Grant K.A., Samson H.H. (1985) Induction and maintainance of ethanol self-administration without food-deprivation in the rat. Psychopharmacol 86: 475-479.
  • Graybiel A.M., MoratallaR., Robertson H.A. (1990) Amphet­amine and cocaine induce drug-specific activation of the fos gene in striosome-matrix compartments and limbic sub­divisions of the striatum. Proc. Natl Acad. Sci. USA 87: 6912-6916.
  • Herdegen T., Leah J.D. (1998) Inducible and constitutive tran­scription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res. Rev. 28: 370-490.
  • Hiroi N., Brown J.R., Haile C.N., Ye H., Greenberg M.E., Nestler E.J. (1997) FosB mutant mice: Loss of chronic co­caine induction of Fos-related proteins and heightened sen­sitivity to cocaine's psychomotor and rewarding effects. Proc. Natl Acad. Sci. USA 94: 10397-10402.
  • Hitzemann B., Hitzemann R. (1997) Genetics, ethanol and the Fos response: A comparison of the C57BL/6J and DBA/2J inbred mouse strains. Alcohol Clin. Exp. Res. 21: 1497-1507.
  • Hope B., Kosofsky B., Hyman S.E., Nestler E.J. (1992) Regu­lation of immediate early gene expression and AP-1 bind­ing in the rat nucleus accumbens by chronic cocaine. Proc. Natl Acad. Sci. USA 89: 5764-5768.
  • Hope B.T., Nye H.E., Kelz M.B., Self D.W., Iadarola M.J., Nakabeppu Y., Duman R.S., Nestler E. (1994) Induction of long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other treatments. Neuron 13: 1235-1244.
  • Kaczmarek L., Siedlecki J.A., Danysz W. (1988) Proto-onco- gene c-fos induction in rat hippocampus. Brain Res. 427: 183-186.
  • Konradi C., Leveque J.C., Hyman S.E. (1996) Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. J. Neurosci. 16: 4231-4239.
  • Koob G.F., BloomF.E. (1988) Cellular and molecular mecha­nisms of drug dependence. Science 242: 715-723.
  • Koob G.F., Moal M.L. (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278: 52-58.
  • Masserman J.H., Yum K.S. (1946) An analysis of the influ­ence of alcohol on experimental neuroses in cats. Psychosom. Med. 8: 36-52.
  • Melia K.R., Ryabinin A.E., Corodimas K.P., Wilson M.C., LeDoux J.E. (1996) Hippocampal-dependent learning and experience-dependent activation of the hippocampus are preferentially disrupted by ethanol. Neurosci. 74: 313-322.
  • Merlo-Pich E., Pagliusi S.R., Tessari M., Talabot-Ayer D., van Huijsduijnen R.H., Christain C. (1997) Common neu­ral substrates for the addictive properties of nicotine and cocaine. Science 275: 83-86.
  • Moratalla R., Elibol B., Vallejo M., Graybiel A.M. (1996) Network-level changes in expression of inducible Fos-Jun proteins in the striatum during chronic cocaine treatment and withdrawal. Neuron 17: 147-156.
  • Moratalla R., Robertson H.A., Graybiel A..M. (1992) Dy­namic regulation of NGFI-A (zif268, egr1) gene expres­sion in the striatum. J. Neurosci. 12: 2609-2622.
  • Nestler E.J., Aghajanian G.K. (1997) Molecular and cellular basis of addiction. Science 278: 58-61.
  • Ogilvie K.M., Lee S., Rivier C. (1998) Divergence in the ex­pression of molecular markers of neuronal activation in the parvocellular paraventricular nucleus of the hypothalamus evoked by alcohol administration via different routes. J. Neurosci. 18: 4344-4352.
  • Pohorecky L.A. (1990) Interaction of ethanol and stress: re­search with experimental animals-an update. Alcohol Al­cohol. 25: 263-276.
  • Risinger F.O., Cunningham C.L. (1995) Genetic differences in ethanol-induced conditioned taste aversion after ethanol preexposure. Alcohol 12: 535-539.
  • Robertson H.A., Peterson M.R., Murphy K., Robertson G.S. (1989) D1-dopamine receptor agonists selectively activate striatal c-fos independent of rotational behaviour. Brain Res. 503: 346-349.
  • Rosen J.B., Chuang E., Iodarola M.J. (1994) Differential in­duction of Fos protein and a Fos-related antigen following acute and repeated cocaine administration. Mol. Brain Res. 25: 168-172.
  • Ryabinin A.E. (1998) Role of hippocampus in alco­hol-induced memory impairment: implication from behav­ioral and immediate early gene studies. Psychopharma- cology 139: 34-43.
  • Ryabinin A.E., Criado J.R., Henriksen S.J., Bloom F.E., Wil­son M.C. (1997) Differential sensitivity of c-Fos expres­sion in hippocampus and other brain regions to moderate and low doses of alcohol. Mol. Psychiatry 2: 32-43.
  • Ryabinin A.E., Melia K.R., Cole M., Bloom F.E., Wilson M.C. (1995) Alcohol selectively attenuates stress-induced c-fos expression in rat hippocampus. J. Neurosci. 15: 721-730.
  • Ryabinin A.E., Wang Y.-M. (1998) Repeated alcohol admin­istration differentially affects c-Fos and FosB protein immunoreactivity in DBA/2J mice. Alcohol. Clin. Exp. Res. 22: 1646-1654.
  • Ryabinin A.E., Wang Y.-M .(1999) Context-dependent effects of ethanol injection on immediate early gene expression in mouse brain. Alcohol. Clin. Exp. Res. Suppl.23: 95A.
  • Ryabinin A.E., Wang Y.-M., Bachtell R.K., Kinney A.E., Grubb M.C. Mark G.P. (2000) Cocaine - and alcohol-medi­ated expression of inducible transcription factors is blocked by pentobarbital anesthesia. Brain Res. 877: 251-261.
  • Ryabinin A.E., Wang Y.-M., Freeman P., Risinger F.O. (1999) Selective effects of alcohol drinking on restraint-in­duced expression of immediate early genes in mouse brain. Alcohol. Clin. Exp. Res. 23: 1272-1280.
  • Samson H.H. (1986) Initiation of ethanol reinforcement using a sucrose-substitution procedure in food- and water-sated rats. Alcohol. Clin. Exp. Res. 10: 436-442.
  • Takayama K., Suzuki T., Miura M. (1994) The comparison of effects of various anesthetics on expression of Fos protein in the rat brain. Neurosci. Lett. 176: 59-62.
  • Thiele T.E., Roitman M.F., Bernstein I.L. (1996) c-Fos induc­tion in rat brainstem in response to ethanol- and lithium chloride-induced conditioned taste aversions. Alcohol. Clin. Exp. Res. 20: 1023-1028.
  • Topple A.N., Hunt G.E., McGregor I.S. (1998) Possible neural substrates of beer-craving in rats. Neurosci. Lett. 252:99-102.
  • Torres G., Rivier C. (1993) Cocaine-induced expression of striatal c-fos in the rat is inhibited by NMDA receptor an­tagonists. Brain Res. Bull. 30: 13-176.
  • Torres G., Rivier C., Weiss F. (1994) A ketamine mixture an­esthetic inhibits neuroendocrine and behavioral conse­quences of cocaine administration. Brain Res. 656:33-42.
  • Trimarchi F. (1992) Neuro-ophtalmology. Curr. Opin. Neurol. Neurosurg. 5: 740-743.
  • Ueyama T., Ohya H., Yoshimura R., Senba E. (1999) Effects of ethanol on the stress-induced expression of NGFI-A mRNA in the rat brain. Alcohol 18: 171-176.
  • Vaughan J., Donaldson C., Bittencourt J., Perrin M.H., Lewis K., Sutton S., Chan R., Turnbull A.V., Lovejoy D., Rivier C., Rivier J., Sawchenko P.E., Vale W. (1995) Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378: 287-292.
  • Weninger S.C., Dunn A.J., Muglia L.J., Dikkes P., Miszek K.A., Swiergiel A.H., Berridge C.W., Majzoub J.A. (1999) Stress-induced behaviors require the corticotropin-releas- ing hormone (CRH) receptor, but not CRH. Proc. Natl Acad. Sci. USA 96: 8283-8288.
  • Wise R.A. (1996) Neurobiology of addiction. Curr. Opin. Neurobiol. 6: 243-251.
  • Young S.T., Porrino L.J., Iadarola M.J. (1991) Cocaine in­duces striatal c-fos-immunoreactive proteins via dopami- nergic D1 receptors. Proc . Natl Acad. Sci. USA 88: 1291-1295.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-508a5731-dbd6-4df8-9957-faacf1397860
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.