PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 421a |

Tytuł artykułu

Biologiczne procesy a ksztaltowanie zyznosci gleby

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

PL

Abstrakty

PL
Procesy biologiczne kształtujące żyzność gleby w ekosystemach lądowych opierają się głównie na transformacji materii organicznej. Związane są z drobnoustrojami i wydzielanymi przez nie enzymami oraz tempem prowadzonych przez nie przemian biogeochemicznych w krążeniu pierwiastków, które przechodzą z nieorganicznych lub nieożywionych organicznych form w połączenia protoplazmatyczne i po ich obumarciu z powrotem do abiotycznych części ekosystemu. Drobnoustroje prowadzą różnorodne procesy geochemiczne, a przebieg procesów i ich wpływ na środowisko zależy od ich aktywności. Aktywność biologiczna i żyzność gleb wiąże się głównie z zawartością w niej materii organicznej. Materia ta pochodzi głównie z resztek roślinnych, wydzielin korzeniowych i częściowo z biomasy mikroflory i mikrofauny. Mineralizacja glebowej materii organicznej wynosi od 2 do 5% rocznie. Zależy to od warunków klimatycznych i intensywności uprawy. Znanym jest fakt, że długotrwałe stosowanie orki prowadzi do zmniejszenia się materii organicznej w glebie. Wywołuje to zaburzenia cyklu pokarmowego i żyzności i prowadzi do degradacji jakości gleby. Dobór i nasycenie określonych gatunków roślin w strukturze zasiewów, przy uwzględnieniu nawożenia obornikiem może znacznie zmienić ten niekorzystny trend i pozwolić na utrzymanie wysokiej urodzajności gleby.
EN
Biological processes of organic matter tranformation play the major role in development and activity of terrestial ecosystems. These processes are connected with microorganisms and their released enzymes into the soil. The rate of these processes is conjucted with biochemical transformation in the element cycling, as result of passing of inorganic or inamimated organic forms into protoplasmatic compounds, which after their death come back to ekosystem abiotic part. The microorganisms take part in different geochemical processes and thier rate is dependent on microbial activity. Biological activity and fertility of soil are mostly connected with organic matter. Most soil organic matter is derived from plant residues, roots excretions and partly from microbial and microfauna biomase. The rate of mineralization of soil organic matter range, generally, from 2-5% per year. This transformation depends on climatic conditions and applied cultivation system. The effect of the long-term tillage causes a decrease of soil organic matter, which in turn disturbs nutrition cycling, degrades soil fertility and quality. The cultivation of properly chosen plants in the plant rotation system and the application of farmyard manure allow to keep the high productivity of soil.

Wydawca

-

Rocznik

Tom

Opis fizyczny

s.209-219,tab.,bibliogr.

Twórcy

autor
  • Zaklad Mikrobiologii Rolniczej, Instytut Uprawy Nawozenia i Gleboznawstwa, ul.Czartoryskich 8, 24-100 Pulawy

Bibliografia

  • 1. Alexander M. (1971). Microbial Ecology. Ed. John Wiley and Sons, New York.
  • 2. Alexander M. (1977). Introduction to Soil Microbiology (Second Edition) John Wiley and Sons, New York.
  • 3. Anderson J.P.E., Domsch K.H. (1,978). A physiological method for the quantitative measurement of microbiological biomass in soils. Soil Biol. Biochem. 10, 215-221.
  • 4. Anderson T.H., Domsch K.H. (1989). Ratios of microbial biomass carbon to total organic carbon in arable soils, Soil Biol. Biochem. 21, 471-479.
  • 5. Bauer A., Black A.L. (1981). Soil carbon, nitrogen and bulk density comparison in two cropland tillage system after 25 years and virgin grassland. Soil Sci. Soc. Am. J. 45, 1166-1170.
  • 6. Bottner P., Salith Z., Billes G. (1988). Root activity and carbon metabolism in soil. Biol. Fertil. Soils 7, 71-78.
  • 7. Brady N.C. (1984). The Nature and Properties of Soils. 9th ed. MacMillan, New York.
  • 8. Brooks P.C., Powlson D.S., Jankinson D.S. (1984). Phosphorus in the soil microbial biomass. Soil Biol. Biochem. 16, 169-175.
  • 9. Burke I.C., Yonker C.M., Parton W.J., Cole C.V., Flach K., Schimel D.S. (1989). Texture, climate and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Sci. Soc. Am. J. 53, 800-805.
  • 10. Buyanovsky G.A., Wagner G.H. (1987). Carbon transfer in a winter wheat (Triticum aestivum) ecosystem. Biol. Fertil. Soils 5, 76-82.
  • 11. Campbell C.A., Biderbeck V.O., Schnitzer M., Selles F., Zentner R.P. (1989). Effect of 6 years of zero tillage and N Fertilizer management on changes in soil quality of an orthic brown chernozem in southwestern Saskatchewan. Soil Tillage Res. 14, 39-52.
  • 12. Chapman S.J., Lynch J.M. (1985b). Polysaccharide synthesis by capsular microorganisms in co-culture with cellulolytic fungi on straw and stabilization of soil aggregates. Biol. Fertil. Soils 1, 161-166.
  • 13. Carter M.R. (1986). Microbial biomass as an index for tillage-induced changes in soil biological properties. Soil Tillage Res. 7, 29-40.
  • 14. Dalal R.C., Mayer R.J. (1986a). Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. I. Overall changes in soil properties and trends in winter cereals yields. Aust. J. Soil Res. 24, 265-279.
  • 15. Dalal R.C., Mayer R.J. (1986b). Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. II. Total organic carbon and its rate of loss from the soil profile. Aust. J. Soil Res. 24, 281-292.
  • 16 Dalton D.A., Evans H.J., Hanus F.J. (1985). Stimulation by nickel of soil microbial urease activity and urease and hydrogenase activities in soybeans grown in a low-nickel soil. Plant Soil 88, 245-250.
  • 17. Dick W.A., Tabatabai M.A. (1984), Kinetic parameters of phosphatases in soil and organic waste materials. Soil Sci. 173, 7-15.
  • 18. Dick W.A., Rasmussen P.E., Kerle E.A. (1989). Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-follow system. Biol. Fertil. Soils 6, 159-164.
  • 19. Doran J.W. (1980a). Microbial changes associated with residue management and reduced tillage. Soil Sci. Soc. Am. J. 44, 518-524.
  • 20. Doran J.W. (1980b). Soil microbial and biochemical changes associated with reduced tillage. Soil Sci. Soc. Am. J. 44, 765-771.
  • 21. Ensminger L.E., Gieseking S.E. (1942). Resistance of clayadsorbed proteins to proteolytic hydrolysis. Soil Sci. 53, 205-209.
  • 22. Halsall D.M., Turner G.L., Gibson A.H. (1985). Straw and xylan utilization by pure cultures of nitrogen-fixing Azosporillum spp. Appl. Environ. Microbiol. 49, 423-428.
  • 23. Harper S.H.T., Lynch J.M. (1981). The kinetics of straw decomposition in relation to its potential to produce the phyotoxin acetic acid. J. Soil. Sci. 32, 627-637.
  • 24. Hofmann E., Seegerer A. (1951). Soil enzymes as factors of fertility. Naturwissenschaften 38, 141-142.
  • 25. Kobus J., Strzelcowa A. (1963). Urcovni nitrificacni schopnosti pud Less-Quostelovym pristrojem. Rostlinna Vyroba 8, 841-845.
  • 26. Kobus J., Pacewiczowa T. (1966). Wpływ minerałów ilastych na czynność biologiczna gleb lekkich (część II). Rocz. Glebozn. 16, 53-65.
  • 27. Kobus J. (1970). The role of montmorillonite in transformations of organie compounds. Pamiętnik Puławski 39, 189-238.
  • 28. Ladd J.N., Butler J.A.H. (1975). Humus-enzyme systems and synthetic, organic polymer-enzyme analogs. Soil Biochem. 4, 143-194.
  • 29. Ladd J.N., Oades J.M., Amato M. (1981). Microbial biomass formed from ¹⁴C, ¹⁵N-lablled plant material decomposing in soils in the field. Soil Biol. Biochem. 13, 119-126.
  • 30. Loquet M. (1978). The study of respiratory and enzymatic activities of earthworm-made pedological structures in a grassland soil at Citeaux, France. Sci. proc. R. Soc. Dublin 6, 207-214.
  • 31. Lynch J.M. (1988). The terrestrial environment. In Microorganisms in Action: Concepts and Application in Microbial Ecology, J.M. Lynch and J.E. Hobbie (eds) Blackwell Scientific, Oxford.
  • 32. Lynch J.M., Bragg E. (1985). Microorganisms and soil aggregate stability. Adv. Soil Sci. 2, 133-172.
  • 33. Lynch J.M., Harper S.H.T. (1983). Straw as a substrate from cooperative nitrogen fixation. J. General Microbiol. 129, 251-253.
  • 34. Lynch J.M., Whipps J.M. (1991). Substrate flow in rhizosphere. Plant Soil. 129, 1-10.
  • 35. Martin A., Mariotti A., Balesdent J., Lavelle P., Vuattuous R. (1990). Estimate of organic matter turnover rate in a savanna soil by ¹³C natural abundance measurments. Soil Biol. Biochem. 22, 517-523.
  • 36. Myśków W. (1981). Próby wykorzystania wskaźników aktywności mikrobiologicznej do oceny żyzności gleby. Postępy Mikrobiologii 20, 173-192.
  • 37. Myśków W., Stachyra A., Zięba S., Masiak D. (1994). A new index for evaluation of soil fertility. Microbial. Res. 149, 321-325.
  • 38. Orten J.M., Neuhaus O.O. (1970). Biochemistry, 8th ed. C.V. Mosby, St.Luis.
  • 39. Papendick R.I., Parr J.F., Mayer R.E. (1990). Managing crop resiudes to optimize crop/livestock production systems for dryland agriculture. Adv. Soil Sci. 13, 254-272.
  • 40. Paul E.A. (1976). Nitrogen cycling in terrestrial ecosystems. In Envioronmental Biogeochemistry, Vol. l,J.O. Nriagu (ed.). Ann. Arbor Science. 225-243.
  • 41. Power J.F., Papendiek R.I. (1985). Organic sources of nutrients. In Fertilizer Technology and Use. O.P. Engelstad (ed.) American Society of Agronomy, Medison, Wis., 503-509.
  • 42. Ramirez-Martinez J.R., McLaren A.D. (1966). Some factors influencing the determination of phoshatase activity in native soils and in soil sterilized by irradiation. Enzymologia 31, 23-28.
  • 43. Roper M.M. (1983). Field measurment of nitrogenase activity in soils amended with wheat straw. Aust. J. Agric. Res. 34, 725-739.
  • 44. Russel S., Kobus J. (1974). A Kulenbozo talajok dehydrogenaz activitazza. Agrartudomanyj Kzlemenych 33, 161-168.
  • 45. Saggar S., Bettany J.R., Stewart J.W.B. (1981). Measurment of microbial sulphur in soil. Soil Biol Biochem. 13, 493-498.
  • 46. Sarathchandra S.U., Perrot K.W., Littler R.A. (1989). Soil microbial biomass: Influence simulated temperature changes on size, activity and nutrient-cnontent. Soil Biol. Biochem. 21, 987-993.
  • 47. Satchell J.E., Martin K., Kirshnamoorthy R.V. (1984). Stimulation of microbial phosphatase production by earthworn activity. Soil Biol. Biochem. 16, 195.
  • 48. Scott N.M. (1984). Sulphur in soils and plant. In Soil Organic Matter and Biological Activity. D. Vaughan and R.E. Malcolm (eds.). Martinus Nijhoff. Dordrecht, The Netherlands, 379-402.
  • 49. Smith J.L., Elliot L.F. (1990). Tillage and residue management effects on soil organic matter dynamics in semiarid regions. Adv. Soil. Sci. 13, 69-88.
  • 50. Smith J.L., Paul E.A. (1990). The significance of soil microbial biomass estimations. Soil Bichem. 6, 357-396.
  • 51. Smith J.L., Papendick R.I., Bezdick D.F., Lynch J.M. (1992). Soil Organic Matter Dynamics and Crop Residue Management. In Soil Microbial Ecology. F. Blaine Metting, Jr. (ed.), 65-94.
  • 52. Spier T.W. (1984). Urease, phosphatase, and sulphatase activities of Cook Island and Tongan soils. N.Z.J.Sci. 27, 73-79.
  • 53. Stevart J.W.B., Sharpley A.N. (1987). Controle on dynamics of soil and fertilizer phosphorus and sulphur. In Soil Fertility and Organic Matter as Critical Components of Production Systems. Soil Science Society America Special Publication 19, Madison, Wisc., 101-121.
  • 54. Stott D.E., Elliott L.F., Papendick R.I., Campbell G.S. (1986). Low temperature or low water potential effects on the microbial decomposition of wheat residues. Soil Biol. Biochem. 18, 577-582.
  • 55. Tate K.R. (1987). Soil Organic Matter: Biological and Ecological Effects. John Wiley & Sons, New York.
  • 56. Tarafdar J.C., Jungk A. (1987). Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Soil Biol. Fertil. 3, 199-204.
  • 57. Van Veen J.A., Paul E.A. (1981). Organic C dynamics in grassland soils. I. Background information and computer simulation. Can. J. Soil Sci. 61, 185-201.
  • 58. Veal D.A., Lynch J.M. (1984). Associative cellulolysis and dinitrogen fixation by co-cultures of Trichoderma harzianeum and Clostridium butyricum. Nature 30, 695-697.
  • 59. Voroney R.P., Van Veen J.A., Paul E.A. (1981). Organic C dynamics in grassland soils. II. Model validation and simulation of the long-term effects of cultivation and rainfall erosion. Can. J. Soil Sci. 61, 211-224.
  • 60. Weetall H.H. (1975). Immobilized enzymes and their application in the food and beverage industry. Process Biochem. 10, 3-24.
  • 61. Whips Lynch J.M. (1985). Energy losses by the plant in rhizodeposition. Annu. Proc. Phyochem. Soc. Eur. 26, 59-71.
  • 62. Zhou L.K., Zhang Z.M., Cao C.M. (1983). On the role of total soil enzyme activities in the evaluation of the level of soil fertility. Acta Pedol. Sin. 20, 413-418.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-4e349659-405c-466a-9618-18e42d96cbe6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.