PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 27 | 1 |

Tytuł artykułu

Metabolomics and metabolite prolifing - can we achieve the goal?

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Deciphering of the plant metabolome is one of the most difficult analytical tasks in functional genomic research. Studies directed at the gene or protein expression are well established, sequencing analyses of these kinds of biopolymers on genome or proteome level are possible. This is not the case for metabolites, where identification in single sample of many chemical entities of different elemental composition and structures and various physicochemical properties is necessary. Different instrumental methods are applied for identification of metabolites but none of them allows obtaining unambiguous structural information about more than 500 compounds in single mixture (metabolite profiling). This is a much smaller number of metabolites than is predicted for single plant metabolome. However, instrumental approaches were proposed (metabolite fingerprinting) in which biochemical phenotype of an organism may be estimated, but identification of individual compounds is not possible.

Wydawca

-

Rocznik

Tom

27

Numer

1

Opis fizyczny

p.109-116,ref.

Twórcy

autor
  • Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
autor

Bibliografia

  • Arabidopsis Genome Initiative 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.
  • Bednarek P., Frański R., Kerhoas L., Einhorn J., Wojtaszek P., Rybus-Zając M., Stobiecki M. 2003.
  • Profiling of flavonoid conjugates in Lupinus albus and Lupinus angustifolius responding to biotic and abiotic stimuli. J. Chem. Ecol. 29: 1103-1118.
  • Bristow A.W.T., Webb K.S., Lubben A.T., Halket J. 2004. Reproducible product ion tandem mass spectra on various liquid chromatography/mass spectrometry instruments for the development of spectral libraries. Rapid Commun. Mass Spectrom. 18: 1447-1454.
  • Farre E.M., Tiessen A. Rer U., Geigenberger P., Trethewey R.N., Willmitzer L. 2001. Analysis of com- partmentation of glycolytic intermediates, nucleotides, sugars, organic acid, amino acids and sugar alcohols in potato tubers using a non-aqueous fractionation method. Plant Physiol. 127: 685-700.
  • Fernie A.R. 2003. Metabolome characterization in plant system analysis. Funct. Plant Biol. 30: 111-120.
  • Fernie A.R., Trethewey R.N., Krotzky A.J., Willmitzer L. 2004. Metabolite profiling: from diagnostic to systems biology. Nat. Rev. Mol. Cell Biol. 5: 763-769.
  • Fiehn O., Kopka J., Dormann P., Altmann T., Trethewey R.N., Willmitzer L. 2000. Metabolite profiling for plant functional genomics. Nat. Biotechn. 18: 1157-1161.
  • Fiehn O. 2001. Combinning genomics, metabolome analysis and biochemical modeling to understand metabolic networks. Comp. Funct. Genom. 2: 155-168.
  • Fiehn O. 2002. Metabolomics - the link between genotypes and phenotypes. Plant Mol. Biol. 48: 155-171.
  • Glassbrook N., Ryals J. 2001. A systematic approach to biochemical profiling. Curr. Opin. Plant Biol. 4: 186-190.
  • Griffiths W.J., Jonsson A.P., Liu S., Rai K.P., Wang Y. 2001. Electrospray tandem mass spectrometry in biochemistry. Biochem. J. 355: 545-561.
  • Hall R., Beale M., Fiehn O., Hardy N., Sumner L.W., Bino R. 2002. Plant metabolomics: the missing link in functional genomics strategies. Plant Cell 14: 1437i -1440.
  • Hirai M.Y., Yano M., Goodenowe D.B., Kanaya S., Kimura T., Awazuhara M., Arita M., Fujiwara T., Saito K 2004. Iniegraiion of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 101: 10205-10210.
  • Hughes T.R., Marton M.J., Jones A.R., Roberts C.J., Stoughton R., Armour C.D., Bennett H.A., Coffey E., Dai H.Y., He Y.D.D., Kidd M.J., King A.M., Meyer M.R., Slade D., Lum P.Y., Stepaniants S.B., Shoemaker D.D., Gachotte D., Chakraburtty K., Simon J., Bard M., Friend S.H. 2000. Functional discovery via compendium of expreseion proiiles. Cell 102: 109-126.
  • Huhman D.V., Sumner L.W. 2002. Metabolic profiling of saponins in Medicago sativa and Medicago trun- catula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59: 347-360.
  • Kell D.B. 2004. Metabolomics and sysiems biology: maki ng sense of the soup. Curr. Opin. Microbiol. 7: 296-307.
  • Kerr J. 2001. High-resolution analysis of plant systems. Curr. Opin. Plant Biol. 4: 197-201.
  • Matuszewski B.K., Constanzer M.L., Chavez-Eng C.M. 2003. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 75: 3019-3030.
  • Muller A., Duchting., Weiler E.W. 2002. A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216: 44-56.
  • Niessen W.M.A. 1999. Liquid Chromatography - Mass Spectrometry., Second Edition, Marcel Dekker Inc., New York.
  • Oliver S.G., Winson M.K., Kell D.B., Baganz R. 1998. Sysiematic funciional analysis of the yeast gee nome. Trends Biotechnol. 16: 373-378.
  • Pandey A., Mann M. 2000. Proteomics to study genes and genomes. Nature 405: 837-845.
  • Pichersky E., Gang D.R. 2000. Genetics and biochemistry of secondary metabolites: an evolutionary perspective. Trends Plant Sci. 5: 439-445
  • Raamsdonk L.M., Teusink B., Broadhurst D., Zhang N., Hayes A., Walsh M.M., Berden J.A., Brindle K. M., Kell D.B., Rowland J.J., Westerhoff H.V., van Dam K., Oliver S.G. 2001. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19: 45-50.
  • Ratcliffe R.G., Shachar-Hill Y. 2001. Probing plant metabolism with NMR. Annu. Rev. Plant Physiol. Plant Molec. Biol. 52: 499-526.
  • Roessner U., Wagner C., Kopka J., Trethewey R.N., Willmitzer L. 2000. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 23: 131-142
  • Roessner U., Willmitzer L., Fernie A.R. 2001a. High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiol. 127: 749-764.
  • Roessner U., Luedemann A., Brust D., Fiehn O., Linke T., Willmitzer L., Fernie A.R. 2001b. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13: 11-29.
  • Roessner U., Willmitzer L., Fernie A.R. 2002. Metabolic profiling and biochemical phenotyping of plant systems. Plant Cell Rep. 21: 189-196.
  • Roessner-Tunali U., Hegemann B., Lytovchenko A., Carrari F., Bruedigam C., Granot D., Fernie A.R. 2003. Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol. 133: 84-99.
  • Rossignol M. 2001. Analysis of the plant proteome. Curr. Opin. Biotechnol. 12: 131-134.
  • Sato S., Soga T., Nishioka T., Tomita M. 2004. Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant J. 40: 151-163.
  • Schmelz E.A., Engelberth J., Tumlinson J.H., Block A., Alborn H.T. 2004. The use of vapour phase extraction in metabolic profiling of phytohormones and other metabolites. Plant J. 39: 790-808.
  • Soga T., Ohashi Y., Ueno Y., Naraoka H., Tomita M., Nishioka T. 2003. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J. Proteome Res. 2: 488-494.
  • Stein S.C. 1999. An integrated method for spectrum extraction and compound identification from GC/MS data. J. Am. Soc. Mass Spectrom. 10: 770-781.
  • Stobiecki M. 2001. Applications of separation techniques hyphenated to mass spectrometer for metabolic profiling. Curr. Org. Chem. 5: 89-111.
  • Stobiecki M., Matysiak-Kata I., Frański R., Skała J., Szopa J. 2003. Monitoring changes in steroidal glycoalkaloids content in lines of transgenic poiato plants using liquid chromatography - mass spectrometry. Phytochemistry, 62: 959-969.
  • Sumner L.W., Mendes P., Dixon R.A. 2003. Plant metabolomics: large scale phytochemistry in the functional genomics era. Phytochemistry 62: 817-836.
  • Tan J., Bednarek P., Liu J., Schneider B., Svatos A., Hahlbrock K. 2004. Universally occurring phenylpro- panoid and species-specific indolic metabolites in infected and uniniected Arabidopsis thaliana roots and leaves. Phytochemistry 65: 691-699.
  • Thretewey R.N., Krotzky A.J., Willmitzer L. 1999. Metabolic profiling: a Rosetta Stone for genomics? Curr. Opin. Plant Biol. 2: 83-85.
  • Thretewey R.N. 2004. Metabolite profiling as an aid to metabolic engineering in plants. Curr. Opin. Plant Biol. 7: 196-201.
  • Tolstikov V.V., Fiehn O. 2002. Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal. Biochem. 301: 298-307.
  • Vas G., Vekey K. 2004. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom. 39: 233-254.
  • Verpoorte R., Memelink J. 2002. Engineering secondary metabolite production in plants. Curr. Opin. Biotechnol. 13: 181-187.
  • Von Roepenack-Lahaye E., Degenkolb T., Zerjeski M., Franz M., Roth U., Wessjohann L., Schmidt J., Scheel D., Clemens S. 2004. Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time of flight mass spectromeiry. Plant Physiol. 134: 548-559.
  • Wagner C., Sefkow M., Kopka J. 2003. Construction and application of a mass spectral and retention time index database generated from plant GC/EI-ToF-MS metabolite profiles. Phytochemistry 62: 887-900.
  • Wolfender J-L., Ndjoko K., Hostettmann K. 2001. The potential of LC-NMR in phytochemical analysis. Phytochem. Anal. 12: 2-22.
  • Yamazaki M., Nakajima J., Yamanashi M., Sugiyama M., Makita Y., Springob K., Awazuhara M., Saito K. 2003. Metabolomics and differential gene expression in anthocyanin chemo-varietal forms of Perilla frutescens. Phytochemistry 62: 987:995.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-4bf082e2-4b59-4dd2-8d1d-a9766a1e7c8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.