PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

1998 | 09 |

Tytuł artykułu

Aspekt hydrologiczny w modelu EURO-ACCESS [Agroclimatic Change and European Soil Suitability]

Treść / Zawartość

Warianty tytułu

EN
Hydrological aspect in Euro-Access model

Języki publikacji

PL

Abstrakty

EN
This paper presents the aim and realization procedures of the project EURO- ACCESS (Agroclimatic Change and European Soil Suitability, No. EV5VCT920129, CIPA3510PL923399, CIPDCT930022, CIPDCT925058, financed by EC). The project was coordinated by Dr. Peter Loveland, Soil Survey and Land Research Centre. Crarifield University, Silsoe Campus, Bedford, Great Britain. The project was conducted in 1992-1995 by scientific institutes from 6 countries, including the Institute of Agrophysics, Polish Academy of Sciences in Lublin. This book consists of main information about the whole project and detailed information about, tasks performed by the Institute of Agrophysics, PAS in cooperation with the Institute of Soil Science and Plant Cultivation (IUNG) Puławy as well as with other European institutes. There are presented results of investigations conducted in cooperation with ADAS Land Centre, Gleadthorpe Research Centre, Meden Vale, Mansfield, Great Britain, (Chapt. 2: Modelling of water movement in the soil profile with the preferential flow influence.), Maria Curie-Sklodowska University, Lublin, Poland (Chapter 3: The method of rainfall intensity estimation for runoff prediction), INRA Montpellier, Prance and IUNG Puławy, Poland (Chapter 4: Verification of yield prediction model using soil and climatic data). The basic task of EURO-ACCESSS project was the model and program development for prediction of climate change influence onto potential yield of important crops. The climatic and physiological properties are assumed to be known. In hydrological submodel developed in ADAS, Mansfield, there was Richards one dimensional flow model assumed. In order to include heterogeneity of the soil the submodel of bypass flow was created by IA PAS and included into existing one dimensional flow procedure. The horizontal infiltration submodel is based on Green- Ampt simplified flow model. It plays role of source and/or sink term within the Richards procedure and accounts for the bypass flow of water from the surface to the deeper layers of the soil profile. The model has been verified in the laboratory conditions, on the basis of numerical experiments and in the field condition. Laboratory flow experiment with induced cracks shows the possibility of explanation of bypass flow with developed procedure. Numerical experiment shows ade- quateness of proposed crack and inaeropore description to the field data. The model allows easily estimate macropore parameters from the simple measurements at the soil surface or from the profile cross-section. The calibration of the model on the basis of measured data consisting soil moistures at different depths and precipitation data, soil hydraulic properties and évapotranspiration data, shows better agreement with the bypass flow model included. The main problem was to estimate momentary rain intensity from the daily precipitation data available. This was done using the statistical model of the rain intensity distribution. The momentary rain intensity plays major role in the runoff estimation. On the basis of long term (1982-1993) historical precipitation, climatic and yield data collected in IUNG Puławy, the whole EURO-ACCESS II has been verified. The plant submodel based on EPIC model was modified and suited to European conditions by INRA, Montpellier. The whole verification was conducted on the basis of daily climatic data. The error analysis shows that, during 1985-1990 period when model was calibrated estimated yield error was 22,5%-, for the period 1984 and 1991 1993 where model was verified the yield error was 8.0%. For the whole period of simulation the error was 15.3%.

Wydawca

-

Czasopismo

Rocznik

Tom

09

Opis fizyczny

s.1-72,rys.,wykr.,bibliogr.

Twórcy

Bibliografia

  • 1] Armstrong, A., Legros, J., and Voltz, M. ACCESS-II: A detail model for crop growth and water conditions. Int. Agrophystc.s, 10(3):171-184, 1996.
  • 2] Armstrong, A., Matthews, A., Portwood, A., Legros, J., Voltz, M., Rounsevell, M., Walczak, R,, and Sławiński, C. European Geophysical Society, 6-10 May 1996.
  • 3] Beven, K. and Germanu, P. Macropores and water flow in soils. Water Resources Research, 18(5) :1311-1325, 1982.
  • 4] Bouma, J. and Dekker, L. W. A case study on infiltration into dry clay soil. I Morphological observations. Geoderma, 20:27 40, 1978.
  • 5] Bronswijk, J. Prediction of actual cracking and subsidence in clay soils. Soil Science, 148(2):87-93, 1989.
  • 6] Bronswijk, J. Vertical soil movement and water content change. Soil Sa. Soc. Am. J., 55:1220-1226, 1991.
  • 7] Bronswijk, J. J. B. Drying, cracking and subsidence of a clay soil in a lysimeter. Soil Sc.ic.ncc., 152(2):48-56, august 1991.
  • 8] Chung, S., Ward, A., and Schalk, C. Evaluation of the hydrologie component of the ADAPT water table management model. Trans. ASAE, 35(2):571-579, 1992.
  • 9] de la Rosa, D., Cronipvoets, J., Mayol, J., and Moreno, J, Land vulnerability evaluation and climate change impact in Andalucia, Spain: soil erosion and contamination. Int. Agrophysics., 10(3):225-238, 1996.
  • 10] Dębski, K. Hydrologia. PWRiL Warszawa, 1970.
  • 11] Domżal, H. Zagęszczenie fazy stałej i jego rola w kształtowaniu wodno- powietrznych właściwości gleby.. Rozprawa habilitacyjna. Akademia Rolnicza, Lublin, T. 1,2, 1977.
  • 12] Edwards, W., Shipitalo, M., Dick, W., and Owens, L. Rainfall intensity affects transport of water and chemicals through macropores in no-till soil. Soil Sci Soc. Am. J., 56:52-58, 1992.
  • 13] Ehlers, W. Obserwations on earth worm channels and 'infiltration on tilled and untilled loess soil.. Soil Sci., 119(2):242-249, 1975.
  • [14] Feher, J. arid Raikaj, K, An expert system to predict climate change induced salmization processes in salt-affected soils. Int. Agrophysics, 10(3):209 224, 1996.
  • 15.Gilman, K. and Newson, M. Soil pipes and pipcflow - A hydrological study in upland Wales. Res. Monogr.l Brit. Geomorphol. Res. Group, Geobooks, Norwich. U.K.:110, 1987.
  • 16.Giraldez, J., Sposito, G., and Delgado, D. A general soil volume change equation: I. The two parameter model. Soil Sei. Soc, Am. J,, 47:419-422, 1983.
  • 17.Gorbunow, N. Glebowe minerały wysokodyspcrsyjne i metody ich badania. PWRiL, Warszawa 1967.
  • 18.Haines, W. The volume change associated with variation of water content in soil. J. Agric. Set., 13:293-310, 1923.
  • 19.Henric, J., Legros, J., Sławiński, C., and Walczak, R. Kalibracja i weryfikacja modelu ACCESS-II (Agroclimatic Change and European Soil Suitability) w oparciu o dane agroklimatyczne z grabowa n/Wisłą, IUNG Materiały konferencyjne, pages -34, 1996. Puławy.
  • 20.Henric, J., Legros, J., Sławiński, C., and Walczak, R. Yield prediction for winter wheat in eastern Poland (Grabów) using the ACCESS II model. Int. Agrophysics, 10:239-247, 1996.
  • 21.Hillel, D. Soil and Water Physical Principles and Processes. Academic Press Inc. London, 1971.
  • 22.Hole, D. Effect of animal on soil, Geoderma, 25:75-112, 1981.
  • 23.Jones, J. Soil piping and stream channel infiltration.. Water Res our. Res., 7:602-610, 1971.
  • 24.Kim, D., Vercecken, H., Feyen, J., Boles, D., and Bronswijk, J. On the characterization of properties of an unripe marine clay soil. I. Shrinkage processes of an unripe marine clay soil in relation to physical ripening. Soil Sci., 153:471- 481, 1992.
  • 25.Lachenbruch, A. H. Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost. Special GSA papers, (TO): 1 67, 1962.
  • 26.Legros, J,, Baldy, C., Fromin, N., and Belli vier, D. Crop models, principles and adaptations to the problem of climate change. In: Soil Responses to Climate Change. NATO Series, 23:71-98, 1995.
  • 27.Lima, L. and Grismer, M. Soil crack morphology and soil salinity. Soil Science, 153(2):149-153, 1992.
  • 28.Lipiec, J. Materiały z badań własny eh- IA PAN lublin,. 1995.
  • 29.Loveland, P. The ACCESS projeet: A gro-Climatic Change and European Soil Suitability a spatially distributed soil, agro-climatic and soil hydrological model. Int. Agrophysics, 10(3):145-154, 1996.
  • 30.Loveland, P. et al. Agro-Climatic Change and European Soil Suitability. Technical Report,, I,(ISBN 1-871651-17-4), 1996. Edited by Lovelaiid P. ,L
  • 31.Loveland, P. et al. Agro-Climatic Change and European Soil Suitability. User manual, II,(ISBN 1-871651-18-2), 1996. Edited by Loveland P. J.
  • 32.Malicki, M., Plagge, R., Renger, M., and Walczak, R. Application of the time- domain reflectornetry (TDR) soil moisture mieroprobe for the determination of unsaturated soil water characteristics ort standard undisturbed soil cores.. Irrig. Sci., 13:65-72, 1992.
  • 33.Malicki, M. and Skierucha, W. A manually controlled TDR soil moisture meter operating with 300 ps lise-time needle pulse. Irrig. Sr.i., 10:153 163, 1992.
  • 34.Mayr, T., Rounsevell, M., Loveland, P., and Si mota, C, Agro-climatic change and European soil suitability: regional modelling at monthly time-step. Int. Agrophysics, 10(3):155-170, 1996.
  • 35.McGarry, D, and Malafant, K, The analysis of volume change in unr.onfined units of soil. Soil Sc. Soc.Am.J., 51:290-297, 1987.
  • 36.McGarry, D. and Malafant, K. Errata: The analysis of volume change in uneonfined units of soil. Soil Sc. Soc.Am.J., 52:902, 1988.
  • 37.Mosley, M. Subsurface flow velocities through selected forest soils.. .J. Hydrol., 55:98- 106, 1982.
  • 38.Omoti, U. and Wild, A. Use of fluorescent dyes to mark the pathways of solute movement through soil under leaching conditiond: II. Field experiment. Soil Sci., 128(2) :98--104, 1979.
  • 39.Pruchnicki, J. Melody opracowań klimatycznych. Wydawnictwa Politechniki Warszawskiej, 1977.
  • 40.Rounsevell, M., Loveland, J., Mayr, T., Legros, J., Armstrong, A., Rajkai, K., Gliński, J., Simota, C., and De la Rosa, D. EURO-ACCESS: Spatially distributed model to predict the effects of climate change, on land use potential i Europe. EC Report, (ISBN 1-871651-17-4), 1995.
  • [41] Schmidt, E. J. and Schulze, R. E. SCS - based design runoff user manual. Agricultural Catchment Research Unit Rep., Dept of Agricultural Engineering, University of Natal, South Africa(25), 1987.
  • 42] Simota, C. and Mayr, T. Predicting the soil water retention curve from readily- available data obtained during soil surveys. Int. Agrophysics, 10(3):185-188, 1996.
  • 43] Sławiński, C. Modelowe badania preferencyjnego przepływu wody w ośrodku glebowym. Instytut Agrofizyki PAN, Lublin, 1997. Praca doktorska.
  • 44] Sławiński, C., Sobczuk. H., and Walczak, R. Submodel of bypass flow in cracking soils - Part 1. Theory. Int. Agrophysics, 10(3):189-185, 1996.
  • 45] Sobczuk, H. and Kabała, Z. Hierarchical model of cracks in vertic soils (oral presentation). Materials of AGU 1992 Fall Meeting, page 214, 1992. San Francisco, California.
  • 46] Sobczuk, H., Plagge, R.., Walczak, R., and Roth, C. Laboratory equipment and calculation procedures to rapidly determine the effect of hysteresis on soil hydrophysical properties under nonstationary conditions.. Z. Pftanz. Bodenk., 155:157-163, 1992.
  • 47] Stirk, G. Some aspects of soil shrinkage and the effect of cracking upon water entry into the soil. Aust. J. Agric. Res.. 5{2):280-290, 1953.
  • 48] Tariq, A. and Durnford, D. Analytical volume change model for swelling clay soil. Soil Sci.Soc.Am.J., 57:1183-1187, 1993.
  • 49] Tempany, II. The shrinkage of soils. J. Agric.. Sci., 8:312-333, 1917.
  • 50] Thomasson, A. and Jones, R. Computer mapping of soil trafficability in the UK. Proc. EC Symposium: Agriculture - computerisation of land-use data, Pisa, Italy., 1989.
  • 51] Turski, R., Dorażał, H., Słowińska-,Jurkiewicz, A,, and Martyn, W. Wpływ frakcji iłu koloidalnego, węglanu wapnia i próchnicy na zawartość wody silnie związanej, plastyczność i pęcznienie rędzin.. Roczn. Glebozn., XXVI(3):35 - 43, 1975.
  • 52] Van Stiphout, T,, Van Lenen, H., Boersma, O., and Bouma, J. The effect of bypass flow and internal catchment of rain on the water regime in a clay loam grassland soil. J. Hydrol., 95:1-11, 1987.
  • 53] Walczak, R.. Modelowe ba dam et energii wiązania wody w glebie o różnym zagęszczeniu. Praca doktorska, AR Lublin., 1974.
  • 54] Walczak, R. Dobór i wykorzystanie nowoczesnej aparatury kontrolno- pomiarowej w doświadczalnictwie polowym. Część II. Monitoring parametrów fizycznych profilu glebowego. ZPPNR, 447:91-100, 1997.
  • 55] Walczak, R.., Sławiński, C., and Kaszewski, M. The method of rainfall intensity estimation for runoff prediction. ZPPNR, 419:119-123, 1995.
  • 56.Walczak, R., Sławiński, C., Malicki, M., and Sobczuk, II. Measurement of water characteristics in soil using TDR technique; water characteristics of loess soil under different treatment.. Int. Agrophysics, 7:175-182, 1993.
  • 57.Walczak, R., Sławiński, C., Sobczuk, H., and Gliński, J. Modeling soil crack development in ACCESS-II. ACCESS. Agoclimatic Change and European Soil Suitability. ISBN 1-871651-17-4-, 1 - Technical Report (chapter 5), 1996.
  • 58.Walczak, R., Sławiński, C,, Sobczuk, H., and Gliński, J. Validation of infiltration with bypass flow effect in cracking soils.. ACCESS. Agroclimatic Change and European Soil Suitability. ISBN 1-871651-17-4, 1 - Technical Report (chap ter 13), 1996.
  • 59.Walczak, R., Sobczuk, H., and Sławiński, C. Submodel of bypass flow m cracking soils Part 2. Experimental validation. Int. Agrophysics, 10(3): 197-207. 1996.
  • 60.Walczak, R., Van der Ploeg, R., and Kirkham, D. .471 algorithm for the calculation of drain spacing for layered soil. Soil Sci. Soc. Amer. .}., 52:336-340, 1988.
  • 61.Walczak, R. and Witkowska-Wal czak, B. Effect of wetting-drying cycles on the aggregation of soil. Roczn. Clebozn., XXXII(3):37-44, 1981.
  • 62.Williams, J., Jones, C., Kiniry, J., and Spane, D. The EPIC crop growth model. Trans, of the ASAE, 32(2):497 511.
  • 63.Witkowska-Walczak, B. Influence des changements d humidite des sols sur leur distribution de laille des agregats. ZPPNR, 312:473-481, 1986.
  • 64.Zaslavsky, D. and Kasiff, G. Theoretical formulation of piping mechanism in cohesive soil. Geotechnique, 15(3):305-316, 1965.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-49f2f558-ef06-4128-9e5e-a283220cbfd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.