PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2000 | 30 |

Tytuł artykułu

Wplyw struktury agregatowej gleb mineralnych na ich hydrofizyczne charakterystyki [badania modelowe]

Treść / Zawartość

Warianty tytułu

EN
The impact of aggregate structure of mineral soils on their hydrophysical characteristics (model investigation)

Języki publikacji

PL

Abstrakty

PL
W niniejszej rozprawie przedstawiono wyniki badań wpływu struktury agregatowej gleb mineralnych na ich hydrofizyczne charakterystyki tj. zdolność do retencjonowania wody i współczynniki przenoszenia wody w strefie nasyconej i nienasyconej. Podjęte badania obejmowały zarówno problemu natury metodologicznej, jak i modelowe badania podstawowe oraz modelowanie, nie tylko w aspekcie określenia optymalnej agregacji gleby pod kątem uprawy i pionowania roślin, lecz także możliwości regulowania składowych bilansu wodnego gleby tj. retencji i parowania oraz czynników bezpośrednio na nie wpływających, tj. warunków determinujących ruch wody w glebie. Były to badania modelowe agregatów różnych wymiarów wyodrębnionych z warstwy ornej ośmiu gleb (bielicowe, brunatne, płowe i czarnoziemy) Lubelszczyzny. Uzyskane wyniki wykazały, że badania charakterystyk hydrofizycznych gleb o strukturze agregatowej powinny być przeprowadzane na specjalnie w tym celu przygotowanym materiale glebowym, a parametry struktury agregatowej gleb determinują ich właściwości wodne następująco: wzrost wielkości agregatów glebowych powoduje spadek ich wodoodporności; wielkość agregatów glebowych różnicuje ilość wody zatrzymywanej w glebie, szczególnie w zakresie potencjałów odpowiadających pF 0 - pF 2,2; wzrost wielkości agregatów glebowych powodował wzrost wartości współczynników przewodnictwa wodnego w strefie nasyconej o dwa rzędy wielkości; wzrost wielkości agregatów glebowych powodował spadek wartości współczynników przewodnictwa wodnego w strefie nienasyconej o pięć rzędów wielkości; wprowadzenie do modelu predykcji krzywych retencji wody jako danych wejściowych parametrów dotyczących struktury agregatowej gleb bardzo wyraźnie poprawiło dokładność jego oszacowań w zakresie niskich potencjałów wody glebowej. Z powyższego wynika, że znajomość relacji pomiędzy agregacją gleb a ich hydrofizycznymi charakterystykami może być przydatna w wyborze rodzaju zabiegów agrotechnicznych w celu kształtowania właściwości wodnych gleb.
EN
This dissertation presents the results of the investigation of the impact of aggregate structure of mineral soil on their hydrophysical characteristics, i.e. water retaining capacity and coefficients of water transfer in saturated and unsaturated zones. Undertaken investigations comprised problems of methodological nature as well as fundamental model investigations and modelling, not only in the aspect of determination of optimum soil aggregation from the point of wiev of crop growning and yield, but also possibility of regulation the components of soil water balance, i.e. retention and evaporation and the factors directly influencing them, like conditions determining water movement in the soil. These were model investigations of the aggregates of different sizes selected from the arable layer of eight soils (podzols, brown soils, grey-brown podzolics, chernozems) from Lublin region.Obtained results indicated That the investigation of hydrophysical characteristics of soils with aggregate structure should be performed on specially prepared soil material, and the parameters of soil aggregate structure determine their soil water properties in the following way:increase of soil aggregate sizes results in the decrease of their water resistance; size of soil aggregates differentiates water amount retained in the soil, especially in the range of soil water potentials referring to pF 0 - pF 2,2; increase of soil aggregate sizes caused the increase of the coefficients of water conductivity in saturated zone by two orders; increase of soil aggregate sizes caused the decrease of soil water conductivity coefficients in unsaturated zone by five orders; including the parameters of aggregate soil structure, as input data, into the model of soil water retention curves prediction, predominantly improved the accuracy of their estimation in the range of low soil water potentials. It results from the above, that the knowledge of relation between aggregation of soils and their hydrophysical characteristics can be useful for choosing the type agrotechnical treatments for forming soil water properties.

Wydawca

-

Czasopismo

Rocznik

Tom

30

Opis fizyczny

s.1-96,rys.,tab.,wykr.,bibliogr.

Twórcy

  • Instytut Agrofizyki PAN, Lublin

Bibliografia

  • 1 Abrol I.P,, Palta J.P.: A study of the effect of aggregate size and bulk density on moisture retention characteristics of selected soils. Agrochimica, XIV, 2-3, 157-165, 1970.
  • 2. Ahuja L.R., Naney .T.W., Green R.E., Nielsen D.R.: Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Sci. Soc. Amer. J. 48, 4, 693-702, 1984.
  • 3. Ahuja L.R., Naney J,W,, Williams R.D.: Estimating soil water characteristics from simpler properties or limited data. Soil Sci. Soc. Amer. J. 49, 1100-1105, 1985.
  • 4. Alexander K.G., Miller M.H.: The effect of soil aggregate size on early growth and shoot-root ration of maize. Plant & Soil, 138, 189-194, 1991
  • 5. Altemuller H J. Gedanken zum Aufbau des Bodens und seiner begrifflichen Erfassung. Z. Kulturtechn, 3, 323-336, 1962
  • 6. Amemiya M.: The influence of aggregate size on soil moisture content-capillary conductivity relations. Soil Sci. Soc. Amer. Proc, 29, 6, 744-748, 1965.
  • 7. Amezketa E.: Soil aggregate stability: review. J. Sustainable Agric. 14, 83-151, 1999.
  • 8. Anderson J,L.,Bouma J.: Water movement through pedal soils. Unsaturated flow. Soil Sci. Soc. Amer. J. 41,419-423, 1977.
  • 9. Anderson A.N., McBratney A.B.: Soil aggregates as mass fractals. Austr. J. Soil Res. 33, 757-772, 1995.
  • 10. Arya L.M., Paris J.F.: A physioempirical model to predict the soil moisture characteristic from partiele-size distribution and bulk density. Soil Sci. Soc. Amer. J. 45, 1023-1030, 1981.
  • 11.Arya L.M., Dierolf T.S., Sofyan A., Widjaj-Adhi I.P.G., Genuchten van M Th.: Significance of macroporosity and hydrology for soil management and sustainability of agricultural production in a humid-tropical environment. Soil Sci. 164, 586-601, 1999.
  • 12. Attou F,, Bruand A., Bissonnais Y, : Effect of clay content and silt-clay fabric on stability of artificial aggregates. European J, Soil Sci. 49,569-577, 1998.
  • 13. Burzegar A.R., Nelson P.N., Oades J.M., Rengasamy P.: Organic matter, sodicity and clay type: influence on soil aggregation. Soil Sci. Soc. Amer. J. 61, 1131-1137, 1997.
  • 14. Basak P.: Soil structure and its effect on hydraulic conductivity. Soil Sci. 114,6,417-422, 1972.
  • 15. Bauer A., Black A.L.: Organic carbon effects on available water capacity of three soil textural groups. Soil Sci. Soc. Amer, J. 56, 248-254, 1992.
  • 16. Beckmann W., Gevger E.: Entwurf einer Ordnung der naturlichen Hohlraum,- Aggregat - und Strukturformen in Boden, W: „Die mikromorphometrische Boden analyse". Ed. W.L.Kubiena, Enke- Verlag. 79-91, 1967.
  • 17. Benito E., Diaz-Fierros F.: Effects of cropping on the structural stability of soils rich in organic matter. Soil & Till. Res. 23, 153-161, 1992.
  • 18. Bernas S.M., Oades .J.M., Churchman G.J.: Effects of Latex and Poly-DADMAC on erosion, hydrophobicity and water retention on two different soils. Austr. J. Soil Res, 33,817-832,1995.
  • 19. Beven K., Germann P.: Water flow in soil macropores. J. Soil Sei. 32, 1-29, 1981.
  • 20. Bird N.R., Perrier E., Rieu M.: The water retention function for a model of soil structure with pore and solid fractal distributions. European J. Soil Sci. 51, 55-63, 2000.
  • 21. Bird N.R.,Bartoli F., Dexter A.R.: Water retention models for fractal soil structures. European J. Soil Science. 47, 12, 1-6, 1996.
  • 22. Bissonnais Y.: Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European J. Soil Sci. 47, 425-437, 1996.
  • 23. Bissonais Y.: Aggregate stability and assessment of soil crustability and erodibility. II, Application to humic loamy soils with various organic carbon contents. European J. Soil Sci. 48, 39-48, 1997,
  • 24.Bluemen W.: Calculation of hydraulic conductivities of soils from texture and organic: matter content. Z. Pflanzenemaehr. Bodenkund, 143, 5, 581-605, 1980.
  • 25.Bouma J., Droogers P., Peters P.: Defining the "ideal " soil structure in surface soil of a typic fluvaquent in the Netherlands. Soil Sci. Soc. Amer, J. 63, 343-348, 1999.
  • 26.Braunack M.V., Dexter A.R.: Soil Aggregation in the seedbed, A review. Parts 1,11. Soil & Till. Res. 14,259-298, 1989.
  • 27.Brusseau M.L., Rao P.: Modeling solute transport in structured soils, A review. Geoderma. 46, 169-192, 1990.
  • 28.Carsel R.F,, Parrish R.S.: Developing joint probability distribution of soil water retention characteristics, Water Resour. Res. 24, 755-769, 1988.
  • 29.Carter M.R.: Influence of reduced tillage systems on organic matter, microbiological biomass, macro-aggregate distribution and structural stability of the surface soil in a humid climate Soil & Till. Res. 23, 361-372, 1992.
  • 30.Chan K.Y., Dexter A.R., McKenzie D.C.: Categories of soil structure based on mechanical behaviour and their evaluation using additions of lime and gypsum on sodic Vertisol, Austr. J, Soil Res. 37, 903-911, 1999.
  • 31 Chan K.Y., Heenan D.P., Ashley R.: Seasonal changes in surface aggregate stability under different tillage and crops. Soil & Till. Res. 28, 301-314, 1994.
  • 32. Chaney K. Swift R,S,:Studies on aggregate stability. Re-formation of soil aggregates. J, Soil Sci. 37, 329-335, 1986.
  • 33. Cockroft B., Olsson K.A.: Degradation of soil structure due to coalescence of aggregates in no-till, no-traffic beds in irrigated crops. Austr. J. Soil Res. 38, 61-70, 2000.
  • 34. Collis-George N.: Drainage and soil structure: a review, Austr. J, Soil Res. 29, 923-933, 1991.
  • 35. Connolly R.D.: Modelling effects of soil structure on the water balance of soil-crop systems: a review. Soil & Till. Res. 48, 1-19, 1998.
  • 36. Corlleuille H,, Braudeau E.: A soil fractionation related to soil structural behaviour. Austr. J. Soil Res. 34,653-669, 1996.
  • 37. Cornish P.S.: Soil mac restructure and root growth of establishing seedlings. Plant & Soil. 151, 119-126, 1993.
  • 38. Corsini P.C., Perecin D., Libera C., Della F., Sacchi E.: Effect of aggregate stability on soil water infiltration. Cientifica. Brasil. nr especial, 23, 1977.
  • 39. Cosby B.J., Hornberger G.M., Clapp R.B., Ginn T.R.: A statistical exploration of soil moisture characteristics to the physical properties of soils. Water Resour. Res, 20, 682-690, 1984.
  • 40. Coughlan K.J., Me Garry D., Loch R.J., Bridge B., Smith G.D.: The measurement of soil structure. Some practical initiatives. Austr. J. Soil Res. 29, 869-889, 1991
  • 41. Crawford J.W., Matsui N., Young I.M.: Therelation between the moisture-release curve and the structure of soil. European J. Soil Sci. 46, 369-375, 1995.
  • 42. Cressiveil H.P,, Smiles D.E., Williams J.: Soil structure, soil hydraulic properties and the soil water balance. Austr. J. Soil Res. 30, 265-283, 1992,
  • 43. Czachor H.: Geomertia fazy stałej i przestrzeni porów w rolniczych ośrodkach granularnyeh na przykładzie gleby mineralnej. Acta Agrophysica, 7, 1997
  • 44. Dąbek-Szreniawska M.: Mikrobiologiczne aspekty tworzenia się agregatów glebowych. Problemy Agrofizyki, 4, 1972.
  • 45. Dechnik I., Dębicki R,; Czynniki zaskorupiania gleb oraz metody przeciwdziałania temu zjawisku. Problemy Agrofizyki, 21, 1976.
  • 46. Dechnik I., Dębicki R.: Wykorzystanie syntetycznych środków do ulepszania gleb. Problemy Agrofizyki, 23, 1977.
  • 47.Dechnik I., Lipiec J.: Dynamics of moisture and water-resistance of aggregation of soils cultivated with active implements. Polish. J. Soil Sci. VIII, 2, I 17-124, 1975.
  • 48.Degens B.P., Sparling G.P.: Repeated wet-dry cycles do not accelerate the mineralization of organic C involved in the macro-aggregation of a sandy loam soil. Pland & Soil. 175, 197-203, 1995.
  • 49.De Jong R., Campbell C.A., Nicholaichuk W.: Water retention equations and their relationship to soil organic matter and particie size distributions for disturbed samples. Can, J. Soil Sci. 63, 291-302, 1983.
  • 50.Desler A.R.: Advances in characterization of soil structure. Soil & Till. Res. 11,199-238,1988.
  • 51.Dexter A.R.: Shapes of aggregates from tilled layers of some Dutch and Australian soils. Geoderma. 35, 91-107, 1985.
  • 52.Dexter A.R., Radke J.K., Hewitt .I.S.: Structure of a tilled soil as influenced by tillage, wheat cropping and rainfall. Soil Sci. Soc. Amer. J. 47, 570-575, 1983.
  • 53.Dinel H., Mchuys G.R., Levesque M.: Influence of humic and fi brie materials on the aggregation and aggregate stability of a lacustrine silty clay. Soil Sci. 151,2, 146-158, 1991.
  • 54.Dobrzański B., Witkowska-Walczak B.: Water permeability as a function of soil structure. Roczn. Gleb. XXXII, 3, 17-24, 1981.
  • 55.Dobrzański B., Witkowska-Walczak B.: Water retention and permeability of various aggregate fractions of soils developed from loess, Polish J. Soil Sci. XIX, 1/2, 7-13, 1986.
  • 56.Dobrzański B., Witkowska-Walczak B., Walczak R.: Wpływ agregacji czamoziemu na jego wodno-powictrznc charakterystyki, ZPPNR, 315, 63-79, 1986,
  • 57 Domżal H,: Compaction of the solid phase and its role in the formation of the water-air properties of soils. ZPPNR. 220, II, 137-154, 1983.
  • 58. Domżal H.: Wpływ zagęszczenia gleby na zawartość wody silnie związanej oraz retencją wody produkcyjnej i użytecznej. Roczn. Gleb, XXX, 3,45-72, 1979.
  • 59. Domżal H., Pranagal J.: Wodoodporność agregatów glebowych jako wskaźnik degradacji gleb wywołanej użytkowaniem rolniczym. Fragmenta Agronomica. XI, 3, 22-34, 1994.
  • 60. Domżal H., Słowińska-Jurkiewicz A.: Wpływ składu granulometryczne go i próchnicy na ilość agregatów glebowych i ich odporność na działanie wody. Roczn. Gleb. 39, 3, 5-19, 1988.
  • 61. Domżal II,, Slowińska-Jurkiewicz A,: Struktura gleby jako wskaźnik agrotechnicznych i ekologicznych skutków zagęszczenia gleb użytkowanych rolniczo, Fragmenta Agronomica. XIII, 1, 104-113,1996.
  • 62. Douglas J.T.: Macroporosity and permeability of some soil cores from England and France. Geoderma, 37, 221-231, 1986.
  • 63. Douglas J.T., Jarvis M.G., Ilowse K.R., Goss M.J.: Structure of a silty soil in relation to managament. J. Soil Sci. 37, 137-151, 1986.
  • 64. Droogers P., Meer van der F., Bouma J.: Water accessibility to plant roots in different soil structures occuring the same soil type. Plant & Soil. 188, 83-91, 1997.
  • 65. Dullien F.A.: Porous media. Fluid transport and pore structure. Academic Press. Inc. 1992.
  • 66. Ellsworth T.R., Clapp C.E., Blake G.R.: Temporal variations in soil structural properties under com and soybean cropping. Soil Sci. 151, 6, 405-416, 1991.
  • 67. Emerson W.W.: The structure of soil crumbs. J. Soil Sci. 10, 2, 235-244,1959.
  • 68. Farres P.J,: The dynamics ofrainsplash erosion and the role of soil aggregate stability. Catena. 14, 119-130, 1987.
  • 69. Fayer M, Simmons C.: Modified soil water retention functions for all matric suctions. Water Resour. Res., 31, 5, 1233-1238, 1995.
  • 70.Filgueira R.R., Pachepsky Ya. A., FoumierL.L, Sarli G.O., Aragon A.: Comparison of fractal dimensions estimated from aggregate mass-size distribution and water retention scaling. Soil Sci. 164, 4, 217-223, 1999,
  • 71.Finney J.B,: Mechanization and soil structure. Agriculture, 78, 9, 1-11, 1971.
  • 72.Fong F.K., Mulkey L, A.: Solute transport in aggregated media: aggregate size distribution and mean radii. Water Resour. Res. 26,6, 1291-1303, 1990.
  • 73.Fortun A., Benayas J., Fortun C.: The effects of fulvic and humic acids on soil aggregation: a micromorphological study. J. Soil Sci. 41, 563-572, 1990.
  • 74.Franzluebbers A.J., Arshad M.A,: Soil microbiological biomass and mineralizable carbon of water-stable aggregates. Soil Sci. Soc. Amer. J, 61, 1090-1097, 1997.
  • 75.Gliński J., Walczak R., Witkowska-WalczakB.: Soil water problems in Poland. Agrokemia as talajtan. 38/3-4, 563-577, 1989.
  • 76.Gollany H.L., Schumacher T.E., Evenson P.D., Lindstrom M.J., Lemme G.D.: Aggregate stability of an eroded and desurfacedTypic Argiustoll. Soil Sci. Soc. Amer, J. 55,811-816,1991.
  • 77.Gregson K., Hector D.J., McGowan ML: A one-parameter model for the soil water characteristic. J. Soil Sci. 38, 483-486, 1987.
  • 78.Gumbs F.A., Warkentin B.F.: Bulk density, saturation water content and rate of wetting of soil aggregates. Soil Sci. Soc. Amer. J. 40,28-33,1976.
  • 79.Gummatnw N.G., Paczepski J.A.: Sowremiennyje predstawlicnia o strukturie poczw i strukturoobrazowanii. Dinamika i faktory. Izd. AN ZSRR, Puszczinskij Naucznyj Centr, Institut Poczwowiedienija i Fotosinteza, 1/24, 1991.
  • 80.Gupta S.C., Larson W.E.: Estimating soil water retention characteristics from particle size distribution, organic matter content and bulk density. Water Resour. Res. 15, 1633-1635, 1979.
  • 81.Hajnos M.: Energia powierzchniowa i wielkości jej składowych jako parametry określające zwilżalność i stan agregacyjny wybranych minerałów ilastych i gleb. Acta Agrophysica. 17,1999.
  • 82. Hallett P.D., Young I.M.: Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. European J. Soil Sci. 50, 35-40, 1999.
  • 83. Hamblin A.P.: Sustainable agricultural systems: What are the appropriate measures for soil structure? Austr. J, Soil Res. 29, 709-715, 1991.
  • 84. Hamblin A.P.: Soil water behaviour in response to changes in soil structure. J. Soil Sci, 33, 375-386, 1982.
  • 85. Hamblin A.P.: The influence of soil structure on water movement, crop root growth and water uptake. Advances Agronomy, 38, 95-158, 1985.
  • 86. Hanks J.R., Ashcroft G.L.: Applied soil physics. Springer-Verlag. Berlin-Heidelberg-New York, 1980.
  • 87. Harris R.F., Chesters G., Allen O.N.: Dynamics of soil aggregation. Advances Agr. IK, 107-169, 1966.
  • 88. Hartge K.H,, Bachmann J., Pesci N.: Morphological analysis of soil aggregates using Euler's polyeder formula. Soil Sci Soc. Amer. J. 63, 930-933, 1999.
  • 89. Haynes R.J., Swift R.S.: Stability of soil aggregates in relation to organic constituents and soil water content. J. Soil Sci. 41, 73-83, 1990.
  • 90. Haynes R.J. Swift R.S., Stephen R.C.: Influence of mixed cropping rotations on organic matter content, water stable aggregation and clod porosity in a group ofsoils. Soil & Till. Res. 19,77-87, 1991.
  • 91. Heath ma ii G.C., Ahuja L.R., Timlin D.J., Johnsen K.E.: Surface aggregates and ma cropore effects on chemical transport in soil under rainfall. Soil Sci. Soc. Amer. J. 59, 990-997, 1995.
  • 92. Hillel D,, Hadas A.: Isothermal drying of structurally layered soil columns. Soil Sci. 112, 30-35, 1972.
  • 82. Hillel D.: Introduction to soil physics. Academic Press., Orlando, FL, USA, 1982,
  • 83. Horn R.: Aggregate characterization as compared to soil bulk properties. Soil & Till. Res. 17, 265-289, 1990.
  • 84. Ibrahim S., Shindo H.: Analysis of water-stable soil aggregates with special reference to degree of aggregation. Pedologist. 43, 16-21, 1999.
  • 96 Jabłoński B.r Uprawa roli. W: "Podstawy agrotechniki". Red. W. Niewiadomski, PWRiL, Warszawa, 206-241, 1983.
  • 97 Józefaciuk G., Muranyi A., Szatanik-Kloc A., Csillag J., Włodarczyk T.: Changes of pore system of a brown forest soil under acid degradation in a laboratory experiment. Polish J, Soil Sci. 32,23-32, 1999.
  • 98. Kaca E.: Zintegrowana gospodarka wodna zlewni rolniczej. W: "Ochrona i zróżnicowany rozwój środowiska wiejskiego". Wyd. SGGW, 104-109, 1996.
  • 99. Kaczyński A.A.: Struktura poczwy. Izd. MGU. Moskwa, 1963.
  • 100. Kandeler E., Murer E.: Aggregate stability and soil microbiological processes in a soil with different cultivation. Geoderma. 56, 503-513, 1993.
  • 101. Kaszubkiewicz J.: A model of water hysteresis of capillary-porous media. Polish J. Soil Sci. XXIII, 2, 109-117, 1990.
  • 102. Kaszubkiewicz J.: A model of soil water hysteresis based on pore space geometry. Polish J. Soil Sci.XXX, 1, 1-13, 1997.
  • 103. Kaszubkiewicz J.: Modele histerezy wodnej gleb. Zeszyty Naukowe AR we Wrocławiu. 335, CLV, 1-132, 1998.
  • 104. Kern J.S.: Evaluation of soil water retention models based on basic soil physical properties. Soil Sci. Soc. Amer. J. 59, 1134-1141, 1995.
  • 105. Kirby J.M., Blunden B.G.: Interaction of soil deformations, structure and permeability, Austr, J. Soil Res. 29, 891-904, 1991.
  • 106. Kosugi K,; Three-parameter lognormal distribution model for soil water retention. Water Resour. Res. 30,4, 891-901, 1994.
  • 107. Kowaliński S,, Drozd J,, Licznar M.: Characteristic of the physicochemical properties of structural aggregates of various sizes. Polish J. Soil Sci. XV, 2, 119-128, 1982.
  • 108. Kutilek M., Nielsen D.: Soil hydrology. Catena Verlag. Cremlingen-Destedt, 1994.
  • 109. Lee K.E., Foster R.C.: Soil fauna and soil structure. Austr. J. Soil Res. 29, 745-775, 1991.
  • 110. Letey J.: The study of soil structure, Austr, J. Soil Res, 29, 699-707, 1991
  • 111. Lieffering R.E., McLay C.D.: The effect of strong hydroxide solutions on the stability of aggregates and hydraulic conductivity of soil. European J. Soil Sci. 47, 43-50, 1996.
  • 112. Lipiec J,: Możliwości oceny przewodnictwa wodnego gleb na podstawie ich niektórych właściwości. Problemy Agrofizyki. 40, 1983,
  • 113. Lipiec J., Ishioka T., Hatano R., Sakuma T.: Effects of soil structural discontinuity on root and shoot growth and water use of maize. Plant&Soil. 157,65-74, 1993.
  • 114. Loch R.J.: A method for measuring aggregate water stability of dryland soils with relevance to surface seal development, Austr, J, Soil Res. 32, 687-700, 1994,
  • 115. Longsdon S.D.: Analysis of aggregate fractal dimensions and aggregate densities back-calculated from hydraulic conductivity. Soil Sci. Soc. Amer. J. 59,1216-1221, 1995.
  • 116. Logsdon S.D.: Flow mechanisms through continuous and buried macropores. Soil Sci. 160, 4, 237-242, 1995.
  • 117. Lwowicz M,I,: Wodnyj balans i poczwiennyj pokrow. Poczwow. 9, 43-55, 1965.
  • 118. Marshall T.J.: A relation between permeability and size distribution of pores. J. Soil Sci. 9, I, 1-8, 1958.
  • 119.Martinez-Mena M., Williams A.G., Tenati J.L., Filzjohn C.: Role of antecedent soil water content on aggregates stability in a semi-arid environment. Soil & Till. Res, 48, 71-80, 1998.
  • 120.Materechera S.A., Dexter A.R., Alston A.M.: Formation of aggregates by plant roots in homogenised soils. Plant & Soil. 142, 69-79, 1992.
  • 121.Materechera S.A., Kirby J.M., Alston A.M., Dexter A.R.: Modification ofsoil aggregation by watering regime and roots growing through beds of large aggregates. Plant & Soil. 160, 57-66, 1994.
  • 122.Mbagwu J.S., Aucrswald K.: Relationship of percolation stability of soil aggregates to land use, selected properties, structural indices and simulated rainfall erosion. Soil &Till. Res. 50, 197-206, 1999.
  • 123.Miller D.E.: Available water in soil as influenced by extraction of soil water by plants. Agronomy J.59,420-423, 1967,
  • 124.Milly P.C.D.: Climate, soil water storage, and the average annual water balance. Water Resour. Res. 30, 7, 2143-2156, 1994.
  • 125.Mioduszewski W.: Gospodarowanie zasobami wodnymi w krajobrazie rolniczym. W: "Ochrona i zrównoważony rozwój środowiska wiejskiego", Wyd, SGGW. 91-103, 1996.
  • 126.Mualem Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12,3,513-522, 1976.
  • 127.Mundra M.C., Pal R., Siyag R.S., Poonia S.R.: Unsaturated water transmission characteristics of soils in relation lo texture, aggregate size and initial moisture content. J, Agric, Sci. Camb, 112, 199-204, 1989.
  • 128.Nasr H.M., Selles F.: Seedling emergence as influenced by aggregate size, bulk density and penetration resistance of the seedbed. Soil & Till, Res. 34, 61 -76, 1995.
  • 129.Nearing M.A.: Compressive strenghtfor an aggregated and partially saturated soil. Soil Sci. Soc. Amer. J, 59,35-38, 1995.
  • 130.Neilsen R.P.: Climatic constraints and issues of scale controlling regional biomcs. In; "The role of landscape boundaries in the management and restoration of changing environments". Eds. M. Holland et al. Chapman & Hall, New York. 31-35, 1991.
  • 131 Neilsen R.P., King G.A., DeVelice R.L„ Lenihan J„ Marks D., Dolph J., Campbell B., Glick G.: Sensitivity of ecological landscapes and regions to global climate changc, USEPA Rep. 600/3-89/073. UEPSA Environ. Res. Lab., Corvallis, OR, USA. 1989.
  • 132. Nimah M.N,, Ryan J., Chaudhry M.A.: Effect of synthetic conditioners on soil water retention, hydraulic conductivity, porosity and aggregation. Soil Sci. Soc. Amer. J. 47, 742-745, 1983.
  • 133. Nowicka-Krobska I.: Użyteczna retencja wodna gleb. Instytut Gospodarki Wodnej. Zakład Gospodarowania Zasobami Wodnymi, Maszynopis. Warszawa. 1970.
  • 134. Oades J. M., Waters A.G.: Aggregate hierarchy in soils. Austr, J, Soil Res. 29.815-828,1991.
  • 135. Owczarzak W., Rząsa S,, Kaczmarek Z.: Shrinkage determination of soil aggregates. Int. Agrophysics. 7, 221-227, 1993.
  • 136. Paluszek J.: Wpływ erozji wodnej na strukturę i wodoodporność agregatów gleb płowych wytworzonych z lessu. Roczn. Gleb. XLV, 3/4, 21-31, 1994.
  • 137. Passioura J. B.: Soil structure and plant growth. Austr. J. Soil Res. 29, 717-228, 1991.
  • 138. Perrier E,, Mullon C., Rieu M.: Computer construction of fractal soil structures: simulation of their hydraulic and shrinkage properties. Water Resour. Res. 31, 12, 2927-2943, 1995.
  • 139. Pukos A,: Odkształcenia gleby w zależności od rozkładów wielkości porów i cząstek fazy stałej. Problemy Agrofizyki. 61, 1990.
  • 140. Quirk J.P., Murray R.S.: Towards a model for soil structure behaviour, Austr. J. Soil Res. 29, 829-867, 1991.
  • 141.Rasiah V., Kay B.D.: Characterizing rate of wetting: impact on structural déstabilisation. Soil Sci. 160, 3, 176-183, 1995,
  • 142.Rawls W.L.: Estimating soil bulk density from particle size analysis and organic matter content. Soil Sci. 135, 123-125, 1983.
  • 143.Rawls W.L., Brakiensiek D.L., Saxton K.E.: Estimation of soil water properties. Trans. ASAE. 25, 1316-1320, 1982.
  • 144.Rawls W.J., Gish T.J., Brakiensiek D.L.: Estimating soil water retention from soil physical properties and characteristics. Adv. Soil Sci. 16, 213-234, 1991.
  • 145.Rengasamy P., Murti G.: Physical properties of some ferruginous soil. In: "Modification of soil structure" Eds. W.W. Emerson., R.Bond., A.Dexter. Wiley &Sons. Chichester-New York, 225-232 , 1978.
  • 146.Rejman J., Pawłowski M., Dębicki R., Link M.: Stability of aggregates and erodibility of loess soil. Polish J. Soil Sci, XXVII, 87-91, 1994.
  • 147.Richards L.A.: Methods of measuring soil moisture tension. Soil Sci. 68, 95-112, 1949
  • 148.Richards L.A.: Pressure membrane apparatus, construction and use. Agrie. Eng. 28010,460-472, 1947.
  • 149.Ring rose-Voa se A.J.: Measurement of soil macropore geometry by image analysis of sections through impregnated soil. Plant & Soil. 183, 27-47, 1996.
  • 150.Ringrose-Voase A.J.; Micromorphology of soil structure: description, quantification, application. Austr. J. Soil Res. 29, 777-813, 1991.
  • 151.Rivers E.D., Shipp R.F.: Available water capacity of sandy and gravelly North Dakota soils. Soil Sci. 113,2,74-80, 1972.
  • 152 Rogowski A.S., Kirkham D.: Moisture, pressure and formation of water-stable soil aggregates. Soil Sci. Soc. Amer. Proc. 26, 3, 213-216,1962,
  • 153. Rose D.A.: Water movement in dry soils. II. An analysis of hysteresis. J. Soil Sci 22, 4, 490-507, 1971.
  • 154. Roth C.: Die Bedeutung der Oberflachenverschlammung fur die Auslosung von Abflub and Abtrag. Bodenokologic und Bodengenese. 6, 1992.
  • 155 Roth C., Wilkowska-Walczak B.: Comparison of three methods for measuring the water stability of soil aggregates from temperate and tropical zone, Polish J, Soil Sci. XXV/1, 11-16, 1992.
  • 156.Russell E.W.: Soil structure: its maintenance and improvement, J, Soil Sci. 22,2,137-151,1971
  • 157.Rząsa S., Dębicki R.: Classification and interpretation of soil structure. ZPPNR. 220, II, 49-59, 1983.
  • 158.Rząsa S., Owczarzak W.: Modelling of soil structure and examination methods of water resistance, capillary rise and mechanical strength of soil aggregates. Annals of Poznań Agricultural University. Scientific Dissertations. 135, 1983.
  • 159.Saleh A.: Soil aggregate and crust density prediction. Soil Sci. Soc. Amer. J. 57,524-526,1993.
  • 160.Shainberg I. Levy G.J., Levin J, Goldstein D.: Aggregate size and seal properties. Soil Sci, 162, 470-478, 1997.
  • 161.Shiel R.S., Adey M.A., Lodder M.: The effect of successive wet/dry cycles on aggregate size distribution in a clay texture soil. J. Soil Sci. 39, 71-80, 1988.
  • 162.Sierra J., Renault P., Valles V.: Anaerobiosis in saturated soil aggregates: modelling and experiment. European J. Soil Sci. 46, 519-53 1, 1995.
  • 163.Singer M.J., Southard R.J., Warrington D.N., Janitzky P.: Stability of synthetic sarid-clay aggregates after wetting and drying cycles. Soil Sci. Soc. Amer. J. 56, 1843-1848, 1992.
  • 164.Słowińska-Jurkiewicz A.: Changes in soil structure and physical properties of soil during spring tillage operations. Soil & Till. Res. 29, 397-407, 1994.
  • 165.Słowińska-Jurkiewicz A.: Struktura i właściwości wodno-powietrzne gleb wytworzonych z lessów. Roczn, Nauk Roln. Monografie. s.D., 218, 1989.
  • 166.Sobczuk H.: Comment on water potential definition. ZPPNR. 436, 143-148, 1996.
  • 167.Sobczuk H.: Opis stanu fizycznego gleby jako ośrodka nieuporządkowanego na przykładzie krzywych retencji. Acta Agrophysica, 11, 1998.
  • 168.Sokołowska Z.: Rola niejednorodności powierzchni w procesach adsorpcji zachodzących na glebach. Problemy Agrofizyki, 58, 1989
  • 169.Sokołowskaja N.A.: Rol poczwiennoj struktury w pieredwiżenji włagi k zonie potreblenija. Poczvov. 10,72-80, 1967.
  • 170.Soroczkin W,M.:Wodopronicajemost i fiziczieskije swojstwa poczw.Poczvov. 10,60-67, 1975.
  • 171.Staricka J.A., Benoit G.R.: Freeze-drying effects on wet and dry soil aggregate stability. Soil Sci Soc. Amer, J, 59, 218-223, 1995.
  • 172.Stirzaker R. J., Passioura J.B., Wilms Y.: Soil structure and plant growth: impact of bulk density andbiopores. Plant & Soil, 185, 151-162, 1996.
  • 173.Szein E.W., Bieriezin P.N., Gudima I.I.: Differencialnaja poristostpoczw, Poczwow. 3, 53-65, 1988.
  • 174.Talsma T.: Prediction of hydraulic conductivity from soil water retention data. Soil Sci. 140,3, 184-188, 1985.
  • 175.Tamari S.: Relations between pore space and hydraulic properties in compacted beds of silty-loam aggregates. Soil Techn. 7, 57-73, 1994.
  • 176.Tamboli P.M., Larson W.E., Amemiya M.: Influence of aggregate size on soil moisture retention. Iowa Acad. Sci.. 71, 103-108, 1964.
  • 177.Tisdall J, M.: Possible role of soil microorganisms in aggregation in soils. Plant & Soil. 159, 115-121, 1994.
  • 178.Tisdall J.M.: Fungal hyphac and structural stability of soil. Austr. J. Soil Res. 29,729-743,1991.
  • 179.Tiulin A.F.: Questions on soil structure, II. Aggregate analyses as a method for determination soil structure, Perm. Agr. Sta.; Div. Agr, Chcm. 77, 5-12, 1928.
  • 180.Tokaj J.: Studia mikromorfologiczne i mikromorfometryczne nad agregatami glebowymi Roczn, Gleb. 28, 1, 15-27, 1977,
  • 181.Trzecki S.: Stosunki wodno-powietrzne w różnych frakcjach gruzelków i ich mieszaninach pochodzących z warstwy ornej czarnej ziemi. Roczn. Nauk Roln. 98, 2, 121-129, 1973.
  • 182.Van Genuchten M.Th., Kavel F., Russell W.B., Yates S.R.: Direct and undirect methods for estimating the hydraulic properties of unsaturated soils. In: "Land Qualities in Space and Time". Eds. J.Bouma, A.K.Bregt. Pudoc. Wageningen, 61-72, 1989.
  • 183.Verecken H.J,, Maes J., Feyen J., Darius P.: Estimating the soil moisture retention characteristics from texture, balk density and carbon content. Soil Sci. 148, 389-403, 1989.
  • 184.Vorosniarty C.J., Moore III B.,Melillo J. M., Peterson B.J,: Continental scale models of water balance and fluvial transport. Global Biogeochemistry Cycles. 3, 241-265, 1989.
  • 185.Vyn T. J., Raimbault B.A.: Long-term effect of five tillage systems on corn response and soil structure. Agron. J. 85, 1074-1079, 1993.
  • 186.Wagner L.E., Ding D.: Representing aggregate size distributions as modified lognormal distributions. Trans. ASAE. 37, 3, 815-821, 1994,
  • 187.Walczak R.: Modelowe badania zależności retencji wodnej od parametrów fazy stałej gleby. Problemy Agrofizyki, 41, 1984.
  • 188.Walczak R., Malicki M., Czachor H., Usowicz B.: Opis aparatury i sposobu oznaczania współczynnika przewodnictwa wodnego gleby w strefie nasyconej. Prace Komisji Fizyki Gleby PTGleb, 89, 31-34, 1985,
  • 189.Walczak R., Witkowska B.: Metody badania i sposoby opisywania agregacji gleby. Problemy Agrofizyki. 19, 1976.
  • 190.Walczak R., Witkowska-Walczak B.: Effect of wetting-drying cycles on the aggregation of soil. Roczn. Gleb. XXXII, 3, 37-44, 1981.
  • 191.Walczak R,, Witkowska-Walczak B.: Investigations of water and air characteristics of the soils with aggregate structure. Zesz. Probl. Post. Nauk Roln., 388, 183-209, 1990
  • 192.Walczak R., Witkowska-Walczak B., Baranowski P.: Soil structure parameters in models of crop growth and yield prediction. Int. Agrophysics, 11,111-127, 1997.
  • 193 Walczak R., Witkowska-Walczak B., Doliński A,, Usowicz B.: Aparatura do oznaczania charakterystyk potencjał wody glebowej-wilgotność z automatycznym układem wytwarzania podciśnienia. Prace Komisji Fizyki Gleby PTGleb, 89, 24-30, 1985.
  • 194. Walczak R., Zawadzki S,: Soil water as a basic factor of the growth and crop yield of plants. ZPPNR, 220,1, 53-59, 1979.
  • 195. Weisskopf P., Zihlmann U,, Wiermann C., Horn R., Anken T., Diserens E.: Influence of ploughing on soil structure. Agrarforschung. 6, 293-296, 1999.
  • 196. Williams J., Prebble R.E., Williams W.T., Ilignett C.T.: The influence of texture, structure and clay mineralogy on the soil moisture characteristics. Austr. J. Soil Res. 21, 15-22, 1983.
  • 197. Williams R.D., Ahuja L.R., Naney J.W.: Comparisons of the methods to estimate soil water characteristics from soil particle size distribution, bulk density and limited data. Soil Sci. 153, 172-184, 1992.
  • 198 Witkowska-Walczak B.: The influence of soil aggregation on its water retention. Annales UMCS, XXXV/XXXVI, 13, s.B, 209-225, 1980/1981.
  • 199 Witkowska-Walczak B,: The influence of soil aggregation on the hysteresis effect of the relationship between soil water potential and moisture, Polish J. Soil Sci. XIV, 2, 97-100, 1981.
  • 200 Wilkowska-Walczak B.: Influence des changements d humidite des sols sur leur distribution de taille des agrcgats. Zcsz. Probl, Post. Nauk Roln., 312,473-481, 1986.
  • 201. Witkowska-Walczak B.: Hydrophysical characteristics of rendzina aggregate structure. Zesz. Probl. Post. Nauk Roln., 436, 167-174, 1996.
  • 202. Witkowska-Walczak B.: Hydrophysical characteristics of Podzol, Cambisol and Luvisol aggregates. Part I. Water resistance of the aggregates. Polish J. Soil Sci. XXX/1, 21-29, 1997.
  • 203. Witkowska-Walczak B,: Hydrophysical characteristics of Podzol, Cambisol and Livisol aggregates. Part 11. Water retention curves. Polish J. Soil Sci. XXX/2, 1-6, 1997.
  • 204 Witkowska-Walczak B.: Hydrophysical characteristics of aggregates Orthic Podzol, Eutric Cambisol and Orthic Luvisol. Part III. Saturation, water available for plants. Polish J. Soil Sci. XXX/1, 1-7, 1998.
  • 205. Witkowska-Walczak B.: Hydrophysical characteristics of aggregates Orthic Podzol, Eutric Cambisol and Orthic Luvisol, Part IV. Water conductivity in the saturated and unsaturated zone. Polish J. Soil Sci, XXX/1, 9-17, 1998,
  • 206. Witkowska-Walczak B.: Wielkość efektu histerezy charakterystyk potencjał wody glebowej-wilgotność różnych frakcji agregatów gleby brunatnej i czarnej ziemi. Acta Agrophysica. 22, 253-264, 1999.
  • 207 Witkowska-Walczak B.: Wodoodporność różnych frakcji agregatów gleby brunatnej i czarnej ziemi w cyklicznych zmianach uwilgotnienia. Acta Agrophysica. 23, 177-184, 1999.
  • 208. Witkowska-Walczak B,, Walczak R.: Water characteristics and evaporation of soil aggregates formed from the different soil. J. Hydrology Hydromech. 47, 6, 417-429, 1999.
  • 209, Wojtasik M.: Agrotechniczny sposób zwiększania w glebie retencji wody użytecznej dla roślin. Nowe Rolnictwo. 3,21-28, 1988.
  • 210. Wojtasik M.: Znaczenie naturalnej gęstości gleby w ocenie retencji wody użytecznej dla roślin. Fragmenta Agronomica. 2/18, 59-70, 1988.
  • 211. Wu L., Vomocil J.A,, Childs S.W.: Pore size, partiele size, aggregate size and water retention. Soil Sci. Soc. Amer. J. 54, 952-956, 1990.
  • 212. Yoder R.E.: A direct methods of aggregate analysis of soils and a study of the physical nature of erosion losses. J. Amer. Soc. Agron. 28, 5, 337-351, 1936.
  • 213. Youngs E.G.: The hysteresis effect in soil moisture studies, 7th Cong. ISSS. Madison, Wise., USA. 1-4, 108-113, 1960.
  • 214. Youngs E.G., Leeds-Harrison P.B.: Aspects of transport processes in aggregated soils. J. Soil Sci. 41,665-675, 1990,
  • 215. Zausig .T., Stepniewski W., Horn R.: Oxygen concentration and Redox potential gradients in unsaturated model soil aggregates. Soil Sci. Soc. Amer. J. 57, 908-916, 1993,
  • 216. Zawadzki S.: Laboratoryjne oznaczenia zdolności retencyjnej utworów glebowych. Wiad. IMUZ. XI, 2, 11-31, Í973.
  • 217. Zawadzki S. (Red.). Gleboznawstwo, PWRiL, Warszawa, 1999.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-49e0025a-6b46-47e6-87b4-5da65c687522
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.