PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 12 | 2 |

Tytuł artykułu

Discoloration of azo dye Acid Red 18 by Fenton reagent in the presence of iron powder

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The examined H2O2/Fe0 process was found to be very efficient for discoloration of simulated wastewater containing 100 mg/dm3 commercial azo dye Acid Red 18. The optimal doses of H2O2 and Fe0 were 60 and 50 mg/dm3, respectively at pH 3 and 15 minutes reaction time. Under the described conditions total visual discoloration was achieved. A very important factor was reaction time. Generally, the smaller dose of iron powder, the greater reaction time needed for visual discoloration. A strict linear correlation was observed between Fe0 amount in the range of 10–600 mg/dm3 and final pH. This suggests that the H2O2/Fe0 process has undoubted advantages in comparison with the classical Fenton reaction, because using excessive amounts of the iron powder could reach higher final pH in the H2O2/Fe0 process. Thus, smaller doses of base will be required for final neutralization of wastewater. It was also found that the dissolution time of iron powder at acidic conditions (before H2O2 was added) is an important parameter that influences the rate of discoloration. As the time of iron powder dissolution increases, the time needed for visual discoloration decreases.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

12

Numer

2

Opis fizyczny

p.151-155,fig.,ref.

Twórcy

  • Silesian University of Technology, Konarskiego 18, 44-101 Gliwice, Poland
autor

Bibliografia

  • 1. BIDGA R. J. Consider Fenton chemistry for wastewater treatment. Chem. Engineering Progress. 91(12), 62, 1995.
  • 2. LÜCKING F., KÖSER H., JANK M., RITTER A. Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Wat. Res. 32, 2607, 1998.
  • 3. CASERO I., SICILIA D., RUBIO S., PÉREZ-BENDITO D. Chemical degradation of aromatic amines by Fenton’s reagent. Wat. Res. 31, 1985, 1997.
  • 4. KUO W. G. Decolorizing dye wastewater with Fenton’s reagent. Wat. Res. 26, 881, 1992.
  • 5. NAM S., RENGANATHAN V., TRATNYEK P. G. Substituent effects on azo dye oxidation by the FeIII–EDTA–H2O2 system. Chemosphere. 45, 59, 2001.
  • 6. HUSTON P. L., PIGNATELLO J. J. Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction. Wat. Res. 33, 1238, 1999.
  • 7. BARBUSIŃSKI K., FILIPEK K. Use of Fenton’s reagent for removal of pesticides from industrial wastewater. Polish J. Envir. Studies, 10, 207, 2001.
  • 8. LIN S. H., LIN C. M., LEU H. G. Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation. Wat. Res. 33, 1735, 1999.
  • 9. KITIS M. ADAMS C. D., DAIGGER G. T. The effects of Fenton’s reagent pretreatment on the biodegradability of nonionic surfactants. Wat. Res. 33, 2561, 1999.
  • 10. SHU H. Y., HUANG C. R. Degradation of commercial azo dyes in water using ozonation and UV enhanced ozonation process. Chemosphere. 31, 3813, 1995.
  • 11. SUZUKI T., TIMOFEI S., KURUNCZI L., DIETZE U., SCHÜÜRMANN G. Correlation of aerobic biodegradability of sulfonated azo dyes with the chemical structure. Chemosphere. 45, 1, 2001.
  • 12. SPADARO J. T., GOLD M. H., RENGANATHAN V. Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58, 2397, 1992.
  • 13. Al-HAYEK N., DORÉ M. Oxidation of phenols in water by hydrogen peroxide on alumina supported iron. Wat. Res. 24, 973, 1990.
  • 14. MILLER C. M., VALENTINE R. L. Hydrogen peroxide decomposition and quinoline degradation in the presence of aquifer material. Wat. Res. 29, 2353, 1995.
  • 15. WATTS R. J., KONG S., DIPPERE M., BARNES W. T. Oxidation of sorbed hexachlorobenzene in soils using catalyzed hydrogen peroxide. J. Haz. Mater. 39, 33, 1994.
  • 16. WATTS R. J., JONES A. P., CHEN P. H., KENNY A. Mineral-catalyzed Fenton-like oxidation of sorbed chlorobenzenes. Wat. Environ. Res. 69, 269, 1997.
  • 17. PULGARIN C., PERINGER P., ALBERS P., KIWI J. Efect of Fe-ZSM-5 zeolite on the photochemical and biochemical degradation of 4-nitrophenol. J. Molecular Catalysis A-Chemical, 95, 61, 1995.
  • 18. VALENTINE R. L., WANG H. C. A. Iron oxide surface catalyzed oxidation of quinoline by hydrogen peroxide. J. Envir. Engrg. 124, 31, 1998.
  • 19. TANG W. Z., CHEN R. Z. Decolorization kinetics and mechanisms of commercial dyes by H2O2/iron powder system. Chemosphere. 32, 947, 1996.
  • 20. KWON B. G., LEE D. S., KANG N., YOON J. Characteristics of p-chlorophenol oxidation by Fenton’s reagent. Wat. Res. 33, 2110, 1999.
  • 21. NOGUEIRA R. F. P., GUIMARÃES J. R. Photodegradation of dichloroacetic acid and 2,4-dichlorophenol by ferrioxalate/H2O2 system. Wat. Res. 34, 895, 2000.
  • 22. KANG Y. W., HWANG K-Y. Effects of reaction conditions on the oxidation efficiency in the Fenton process. Wat. Res. 34, 2786, 2000.
  • 23. TANG W. Z., HUANG C. P. 2,4-dichlorophenol oxidation kinetics by Fenton’s reagent. Environ. Technol. 17, 1371, 1996.
  • 24. BISHOP D. F., STERN G., FLEISCHMAN M., MARSHALL L. S. Hydrogen peroxide catalytic oxidation of refractory organics in municipal waste water. Ind. Engng Chem., Proc. Design Develop. 7, 110, 1968

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-48759cd7-5400-4a7d-8d61-fcf55f2d6ab9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.