PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 45 | 2 |

Tytuł artykułu

Germ cell mutagenesis in Drosophila: Multiple endpoint analysis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Genotoxic carcinogens, able to damage DNA by alkylation reactions, represent a very diverse class of agents which are capable of producing a wide range of DNA modifications. The mechanisms leading to genetic changes as a result of exposure to alkylating agents (AAs) have been studied in male germ cells of Drosophila using a structure-activity relationship approach (SAR). The analytical tools available concern both genetic and molecular assays. The genetic tests enable to quantify excision repair and clastogenic potency of the AA after treatment of post-meiotic male germ cells and to determine the degree of germ-cell specificity, i.e., the mutagenic effectiveness in post-versus premeiotic cell stages. For a selected group of alkylating agents the molecular spectra have been studied in post-meiotic cell stages. On the basis of these descriptors clear SAR's between genotoxic activity in germ cells and physico-chemical parameters (s-values and O6/N7-alkylguanine adducts) and carcinogenic potency in rodents became apparent, resulting in five distinct classes of alkylating agents so far. These classes are: 1) SN2-type monofunctional AAs, 2) SN1-type monofunctional AAs, 3) polyfunctional AAs, 4) agents able to form etheno-DNA adducts, and 5) aflatoxin B1 (AFB1) a bulky-adduct forming agent. The recent finding that the molecular data obtained with Drosophila and data of the specific locus tests in male mice show remarkable similarities for most genotoxic agents supports the view that Drosophila is a useful model system for the study of transgenerational damage.

Wydawca

-

Rocznik

Tom

45

Numer

2

Opis fizyczny

p.545-559,fig.

Twórcy

  • University of Leiden, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
autor
autor

Bibliografia

  • Abrahamson, S., Würgler, F.E., De Jongh, C. & Meyer, H.U. (1980) How many loci on the X- chromosome of Drosophila melanogaster can mutate to recessive lethals? Environ, Mutagen. 2, 447-453.
  • Aquirrezabalaga, I., Nivard, M.J.M., Comendador, M.A. & Vogel, E.W. (1995a) Hexamethylmela- mine is a potent inducer of deletions in male germ cells of Drosophila melanogaster. Car­cinogenesis 16, 2679-2683.
  • Aquirrezabalaga, I., Nivard, M.J.M., Comendador, M.A. & Vogel, E.W. (1995b) The cross-linkingagent hexamethylphosphoramide predomi­nantly induces intra-locus and multi-locus de­letions in postmeiotic germ cells of Droso­phila. Genetics 139, 649-658.
  • Ballering, L.A.P., Nivard, M.J.M. & Vogel, E.W. (1993) Characterization of the genotoxic ac­tion of three structurally related 1,2-dihalo- alkanes in Drosophila melanogaster. Mutalion Res. 285, 209-217.
  • Ballering, L.A.P., Nivard, M.J.M. & Vogel, E.W. (1994) Mutation spectra of 1,2-dibromo- cthane, 1,2-dichloroethane and l-bromo-2- chloroethane in excision repair proficient and repair deficient strains of Drosophila mela­nogaster. Carcinogenesis 15, 869-875.
  • Ballering, L.A.P., Nivard, M.J.M. & Vogel, E.W. (1996) Characterization by two-endpoint com­parisons of the genetic toxicity profiles of vi­nyl chloride and related etheno-adduct form­ing carcinogens in Drosophila. Carcinogenesis 17, 1083-1092.
  • Ballering. L.A.P.. Nivard, M.J.M. & Vogel, E.W. (1997) Preferential formation of deletions fol­lowing in vivo exposure of postmeiotic Droso­phila germ cells to the DNA etheno-adduct forming carcinogen vinyl carbamate. Environ. Mol. Mutagen. 30, 321-329.
  • Barbin, A. & Bartsch, H. (1986) Mutagenic and promutagenic properties of DNA adducts formed by vinyl chloride metabolites; in The Role of Cyclic Nucleic Acid Adducts in Carcino­genesis and Mutagenesis (Singer, B. & Bartsch, H., eds.) pp. 345-358, IARC, Lyon.
  • Barbin, A. & Bartsch, H. (1989) Nucleophilic selec­tivity as a determinant of carcinogenic po­tency (TD50) in rodents: A comparison of mono- and Afunctional alkylating agents and vinyl chloride metabolites. Mutation Res. 215, 95-106.
  • Bartsch. H.. Terracini, B., Malaveille, Ch., Toma- tis, L., Wahrendorf, J., Brun, G. & Dodet, B. (1983) Quantitative comparisons of carcino­genicity, mutagenicity and electrophilicity of directracting alkylating agents and of the initial O :N alkylguanine ratio in DNA with carcinogenic potency in rodents. Mutation Res. 110, 181-219.
  • Bartsch, H., Barbin, A., Marion, M.J., Nair, J. & Guichard, Y. (1994) Formation, detection, and role in carcinogenesis of etheno bases in DNA. Drug Metab. Rev. 26, 349-371.
  • Beranek, D.T. (1990) Distribution of methyl and ethyl adducts following alkylation with mono- functional alkylating agents. Mutation Res. 231, 11-30.
  • Boyd, J.B., Golino, M.D., Nguyen, T.D. & Green, M.M. (1976) Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics 84, 485-506.
  • Boyd, J.B., Snyder, R.D., Harris, P.V., Presley, J.M., Boyd, S.F. & Smith, P.D. (1982) Identifi­cation of a second locus in Drosophila mela­nogaster required for excision repair. Genetics 100, 239-257.
  • Cizeau, J., Decoville, M., Leng, M. & Locker, D. (1994) Deletions induced in the white and ver­milion genes of Drosophila melanogaster by the antitumor drug m-dichlorodiammineplat- inum(II). Mutation Res. 311, 31-38.
  • Dekant, W. & Vamvakas, S. (1993) Glutathione- dependent bioactivation of xenobiotics. Xeno- biotica 23, 873-887.
  • Fedtke, N., Boucheron, J.A., Walker, V.E. & Swen- berg, J.A. (1990) Vinyl chloride-induced DNA adducts. II: Formation and persistence of 7- (2"-oxoethyl)guanine and JV2 , 3-ethenoguanine in rat tissue DNA. Carcinogenesis 11, 1287-1292.
  • Friend, S.H., Bernards, R., Rogelj, S., Weinberg, R.A., Rapaport, J.M., Albert. D.M. & Dryja, T.P. (1986) A human DNA segment with prop­erties of the gene that predisposes to retino­blastoma and osteosarcoma. Nature (London) 323, 643-646.
  • Gatti, M. (1982) Sister chromatid exchanges in Drosophila; in Sister Chromatid Exchange (Wolff. S., ed.) pp. 267-296, John Wiley and Sons, New York.
  • Graf, U., Vogel, E.W., Biber. U.P. & Wurgler, F.E. (1979) Genetic control of mutagen sensitivity in Drosophila melanogster. A new allele at the mei-9 locus on the X-chromosome. Mutation Res. 59, 129-133.
  • International Agency for Research on Cancer (1976) I ARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man: Some Naturally Occuring Substances; vol. 10, pp. 51-72, IARC Scientific Publications, Lyon.
  • Koga, N., Inskeep, P.B., Harris, T.M. & Guen- gerich, F.P. (1986) S-[2-(Ar7-Guanyl)ethyUglu- tathione, the major DNA adduct formed from the 1,2 dibromoethane. Biochemistry 25, 2192-2198.
  • Laib, R.J. (1986) The role of cyclic base adducts in vinyl chloride-induced carcinogenesis: Studies on nucleic acid alkylation in vivo; in The Role of Cyclic Nucleic Acid Adducts in Carcinogenesis and Mutagenesis (Singer, B. & BarLsch, H., eds.) no. 70, pp. 101-108, Scientific Publ. IARC, Lyon.
  • Lamb, M.J. & Lilly, L.J. (1971) Induction of reces­sive lethals in Drosophila melanogaster by afla- toxin Bl. Mutation Res. 11, 430-433.
  • Lee, W.R. & Kelley, M.R. (1986) Correction for dif­ferences in germ cell stage sensitivity in risk assessment; in Risk Assessment in Relation to Environmental Mutagens and Carcinogens (Oftedal, P. & Bregger, A., eds.) pp. 99-102, Alan R. Liss, New York.
  • Lindsley, D.L. & Tokuyasu, K.T. (1980) Spermato­genesis; in The Genetics and Biology of Droso­phila (Ashburner, M. & Wright, T.R.F., eds.) vol. 2, pp. 225-294, Academic Press, London.
  • Malkin, D., Li. F.P., Strong, L.C., Fraumeni, J.F., Nelson, C.E., Kim, D.H., Kassel, J., Gryka, M.A., Bischoff, F.Z., Tainsky, M.A. & Friend, S.H. (1990) Germ line p53 mutations in a fa­milial syndrome of breast cancer, sarcomas and other neoplasms. Science 250, 1233- 1238.
  • Marker, P.C., Scung, K., Bland, A.E., Russell, L.B. & Kingsluy, D.M. (1997) Spectrum of Bmp5 mutations from germiine mutagenesis experi­ments in mice. Genetics 145, 435-443.
  • Nivard, MJ.M. Pastink, A. & Vogel, E.W. (1992) Molecular analysis of mutations induced in the vermilion gene of Drosophila melanogaster by methyl methanesulfonate. Genetics 131, 673-682.
  • Nivard, M.J.M., Pastink, A. & Vogel, E.W. (1993) Impact of DNA nucleotide excision repair on methyl methanesulfonate-induced mutations in Drosophila melanogaster. Carcinogenesis 14, 1585-1590.
  • Nivard, M.J.M., Pastink, A. & Vogel, E.W. (1996) Mutational spectra induced under distinct ex­cision repair conditions by the 3 methylating agents N-methyl-N-nitrosourea, JV-methyl-W- nitro-iV-nitrosoguanidine and iV-nitrosodime- thylamine in postmeiotic male germ cells of Drosophila. Mutation Res. 352, 97-115.
  • Nomura, T. (1979) Potent mutagenicity of urethan (ethyl carbamate) gas in Drosophila mela­nogaster. Cancer Res. 39, 4224-4227.
  • Pastink, A., Vreeken, C., Nivard, M.J.M., Searles, L.L. & Vogel, E.W. (1989) Sequence analysis of iV-ethyl-iV-nitrosourea-induced vermilion muta­tions in Drosophila melanogaster. Genetics 123, 123-129.
  • Pastink, A., Heemskerk, E., Nivard, M.J.M., van Vliet, C.J. & Vogel, E.W. (1991) Mutational specificity of ethyl methanesulfonate in exci­sion-repair-proficient and -deficient strains of Drosophila melanogaster. Mol. Gen. Genet. 229, 213-218.
  • Russell, L.B., Cumming, R.B. & Hunsicker, P.R. (1984) Specific-locus mutation rates in the mouse following inhalation of ethylene oxide, and application of the results to estimation of human genetic risk. Mutation Res. 129, 381-388.
  • Russell, L.B. & Rinchik, E.M. (1993) Structural differences between specific-locus mutations induced by different regimes in mouse sper- matogonial stem cells. Mutation Res. 288, 187-195.
  • Sega, G.A. (1990) Molecular targets, DNA break­age, and DNA repair: Their roles in mutation induction in mammalian germ cells; in Biology of Mammalian Germ Cell Mutagenesis (Allen, J.W., Bridges, B.A., Lyon, F.M., Moses, M.J. & Russell, L.B., eds.) Banbury Report 34, pp. 79-91, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Segerback, D. (1990) Reaction products in hemo­globin and DNA after in vitro treatment with ethylene oxide and AT-(2-hydroxyethyl)-iV-nitr- osourea. Carcinogenesis 11, 307-312.
  • Shukla, P.T. & Auerbach, C. (1980) Genetic tests for the detection of chemically induced small deletions in Drosophila chromosomes. Mu­tation Res. 72, 231-243.
  • Sierra, L.M., Pastink, A., Nivard, M.J.M. & Vogel, E.W. (1993) DNA base sequence changes in­duced by die'iiyl sulfate in postmeiotic male germ cells o: Drosophila melanogaster. Mol Gen. Genet. 237. 370-374.
  • Smith, P.D., Baumen, C.F. & Dusenbery, R.L. (1983) Mutagen sensitivity of Drosophila mela­nogaster,, VI. Evidence from the excision- defective mutant for the timing of DNA-repair activity during spermatogenesis. Mutation Res 108, 175-184.
  • Swain. C.G. & Scott, C.B. (1953) Quantitative cor­relation of relative rates: Comparison of hy­droxide ion with nucleophilic reagents to­wards alkyl halides, esters, epoxides and acyl- halides. J. Am. Chem. Soc. 75, 141-147.
  • Tomatis, L., Narod, S. & Yamasaki, H. (1992) Transgeneration transmission of carcinogenic risk. Carcinogenesis 13, 145-151.
  • Verbürgt, F.G. & Vogel, E. (1977) Vinyl chloride mutagenesis in Drosophila melanogaster. Mu­tation Res. 48, 327-336.
  • Vogel, E.W. (1989) Nucleophilic selectivity as a de­terminant of enhanced mutational response in excision repair-defective strains in Drosophila: Effects of 30 carcinogens. Carcinogenesis 10, 2093-2106.
  • Vogel, E.W., Blijleven, W.G.H., Kornelius, M.J.H. & Zijlstra, J.A. (1982) A search for some com­mon characteristics of the effects of chemical mutagens in Drosophila. Mutation Res. 92, 69-87.
  • Vogel, E.W., Barbin, A., Nivard. M.J.M. & Bartsch, H. (1990) Nucleophilic selectivity of alkylating agents and their hypermutability in Drosophila as predictors of carcinogenic po­tency in rodents. Carcinogenesis IX, 2211- 2217.
  • Vogel, E.W., Zijlstra, J.A. & Nivard, M.J.M. (1993) Genetic method for pre-classification of geno- toxins into monofunctional or cross-linking agents. Environ. Mol Mutagen. 21,319-331.
  • Vogel, E.W. & Natarajan, A.T. (1995) DNA damage and repair in somatic and germ cells in vivo. Mutation Res. 330, 183-208.
  • Vogel, E.W., Nivard, M.J.M., Ballering. L.A.B.. Bartsch, H., Barbin. A., Nair, J., Commenda- dor, M.A., Sierra, L.M., Aquirrezabalaga, I., Tosal, L., Ehrenberg, L., Fuchs, R.P.P., Janel- Bintz, R., MaenhautrMichel, G., Montesano, R., Hall, J., Kang, H., Miele, M., Thomale, J., Bender, K., Engelbcrgs. J. & Rajewsky, M.F. (1996) DNA damage and repair in mutagene­sis and carcinogenesis: Implications of structure-activity relationships for cross- species extrapolation. Mutation Res. 113, 177-218.
  • Vogel, E.W. & Nivard, MJ.M. (1997) The response of germ cells to ethylene oxide, propylene ox­ide propylene ¡mine and methyl methanesulfo- nate is a matter of cell stage-related DNA re­pair. Environ. Mol Mutagen. 29, 124-135.
  • Wogan, G.N. (1973) in Methods in Cancer Re­search, (Busched. H., ed.) vol. 7, pp. 309-344, Academic, New York.
  • Zijlstra, J.A. & Vogel, E.W. (1988) The ratio of in­duced recessive lethals to ring-X loss has prog­nostic value in terms of functionality of chemi­cal mutagens in Drosophila melanogaster. Mu­tation Res. 201. 27-38.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-46ccb2e6-ce51-4093-bc75-7f474d791acd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.