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Abstract

The transformation of long water waves arriving at a sloping beach is investigated.
An approximate theory is presented for plane periodic waves propagating in water
of non-uniform depth. The theoretical description of the phenomenon, based on
certain kinematic assumptions, is formulated in the material variables, and the
solution is constructed by applying the Hamilton variational principle. In order
to assess the accuracy of the formulation and to learn more about long wave
transformation, experimental measurements were carried out in a laboratory flume.
In the experiments, a water wave, generated by a piston-type wave maker placed at
one end of the flume, propagated towards a rigid inclined ramp installed at the other
end of the flume. The wave transformation along the direction of its propagation
was recorded by a set of wave gauges installed along the flume. The wave run-
up on the sloping beach was measured with a special conductivity gauge placed
alongside the ramp. Comparison of the theoretical results with experimental data
indicates that the proposed theoretical formulation provides a good description of

* This work was supported by the Polish Ministry of Science and Higher Education
under grant No. N N506 378134.

The complete text of the paper is available at http://www.iopan.gda.pl/oceanologia/



364 J. K. Szmidt, B. Hedzielski

the main features of wave transformation behaviour over a sloping beach, except
in the vicinity of the shore point, where some discrepancies occur.

1. Introduction

Water waves arriving from the sea at a sloping beach undergo changes
as a result of the diminishing water depth. Waves usually increase in
amplitude as they approach a beach; thus, in the theoretical description of
the phenomenon, wave height should be treated as finite (not infinitesimally
small). At the same time, the lengths of arriving waves are large compared
to the water depth; therefore, in the description of such waves, it is justified
to assume that the water flow is nearly horizontal. For this reason, only the
horizontal coordinates are chosen as independent variables in the description
of this problem. Commonly, spatial (Eulerian) coordinates are used as
independent variables in the description of these waves. In this Eulerian
description, however, it is difficult to solve the boundary conditions,
especially at the moving boundaries of the fluid domain. Another possibility,
employed in the present work, is to use material (Lagrangian) coordinates
as independent variables, since this provides a much easier solution of
the boundary conditions. But this comes at a cost: the structure of the
equations describing the fluid motion is more complicated.

The subject literature is considerable. A detailed discussion of long
water waves may be found in Dingemans’ monograph (1997), which also
contains a vast bibliography on the subject; among other contributions, the
one by Carrier & Greenspan (1958) stands out. On the basis of shallow water
approximations, these authors discovered a hodograph transformation that
allowed them to transform the original non-linear shallow-water differential
equations, defined in physical space, into a single, second-order linear
differential equation for a potential function defined in transformation space.
This linear equation enabled them to calculate the run-up height of a non-
breaking long wave of small amplitude on a sloping beach. However,
with the non-linear hodograph transformation, it is difficult to specify
initial or boundary data on a sloping beach for the general case (Synolakis
1987, Kânoğlu 2004). The difficulty emerges in the transformation from
the physical space of a given initial condition (wave profile) into the
transformation space. In order to overcome this difficulty, Synolakis (1987)
used a linearized hodograph transformation with which the initial waveform
in the transformation space can be defined. The detailed discussion of the
problem was confined to a solitary wave, for which a formula describing
the maximum run-up of the wave was derived. An approach similar to
that by Synolakis is given in Kânoğlu (2004), where, in order to solve the
initial value problem, the transformation is linearized in the transformation
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space at time t = 0, after which the full non-linear transformation is used

to solve the initial value problem of the non-linear shallow water wave

equations. In particular, Kânoğlu considered the solitary wave and N –
wave initial conditions. In constructing a solution to the non-linear shallow

water waves, Pelinovsky (1991) introduced the similarity parameter Br:

this is of fundamental importance. It was shown that for Br < 1 the

solution is continuous and the wave runs up the beach without breaking. But

when Br > 1, the wave breaks. Formulae for a monochromatic wave were

derived, which describe the maximum run-up height and its velocity. Massel
& Pelinovsky (2001) investigated the transformation of dispersive breaking

waves approaching a sandy beach. On the basis of mild-slope equations

in a deeper area and linear equations of shallow water in the area close to

the shoreline and taking into account the dissipation of energy due to wave

breaking, the authors proposed a solution to the more complex problem of

the run-up of dispersive breaking and non-breaking waves. They derived
formulae describing the maximum and minimum run-up distances. The

good accuracy of the model’s predictions was demonstrated by comparison

of its results with literature data. In order to simplify Carrier & Greenspan’s

description of waves climbing a sloping beach, Shuto (1967) applied material

coordinates as independent variables. In this material formulation, run-up

was described by a linear equation obtained without any transformation.
This equation was derived by means of a power series expansion of all

dependent variables in the problem with respect to a small parameter.

The first-order approximation yielded equations similar to those of the

linear theory described in the spatial coordinates. Theoretical results were

compared with experimental data. A non-linear set of equations describing

long waves in the material variables was derived by Goto (1979). The
equations were obtained with the help of a perturbation scheme with respect

to displacements of fluid particles from their initial positions. Numerical

solutions of the equations for wave run-up were compared with solutions

based on the linear theory.

Another formulation of the propagation of non-linear long water waves
over uneven bottoms was given by Miles & Salmon (1985). This was

based on the kinematic assumption that fluid motion is ‘columnar’, i.e. the

horizontal displacements of fluid particles forming a vertical column are the

same for all particles. More recently, Wilde & Chybicki (2004) derived

equations for a non-linear long wave propagating in a fluid of constant

depth with the aid of the kinematic assumption that a material vertical line
remains vertical during the entire motion of the fluid. Their assumption

is similar to that of Miles & Salmon. A generalization of the formulation

for long waves propagating in a fluid of non-uniform depth may be found
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in Chybicki (2006) and Szmidt (2006). In both papers, the governing
equations for long waves were derived by means of a variational formulation
with appropriate Lagrangian density functions. In the first paper, an
approximated form of the Lagrangian density function in the action integral
was used. In the second paper, the full form of the Lagrangian density
function was applied, but some simplifications were introduced during
the derivation of the final equations of the fluid motion. Obviously, the
kinematic assumption of ‘columnar’ motion simplifies the derivation of
equations describing the propagation of long waves. Its application to waves
propagating in a fluid with a small continuous variation of its depth seems
justified; but at the same time, questions arise about the accuracy of the
formulation, especially in the case of waves propagating towards sloping
beaches. In order to answer this question, we need to compare the results
of the theoretical formulation with empirical data. We may expect that the
formulation will provide accurate results for small slopes of the fluid bottom.
The problem is important from the theoretical and practical points of view,
hence the aim of the present paper is to examine the transformation of
waves approaching a sloping beach. To this end, experiments conducted
in a laboratory flume were an essential part of our investigations. In the
experiments, the waves were generated by a piston-type wave maker placed
at one end of the flume. A rigid inclined ramp with a slope of 10% was
installed at a certain distance from the generator wall. Such an inclination
of the ramp was selected for practical reasons associated with the dimensions
of the laboratory flume and the inclined plate. The data obtained in the
experiments served as a reference for the examination of the approximations
in the description of the wave transformation. In the experiments, the
parameters of the transforming wave were recorded by a set of wave gauges
placed at fixed distances from the wave maker. The run-up of the waves on
the sloping ramp was measured using a special conductivity gauge placed
on its surface.

2. Theoretical description

Consider a finite fluid domain such as the one shown schematically in
Figure 1. The motion of the fluid is induced by the piston-type wave maker
starting to move at an initial moment of time. After a finite elapse of time,
the generated wave will arrive at the boundary of zero water depth. As
the wave propagates, it is transformed as a result of the diminishing water
depth. The case shown in Figure 1 corresponds directly to the water wave
flume in which the experiments on the transformation of such waves were
carried out. In the theoretical description of this phenomenon, we follow
the method presented in Szmidt (2006). As in that paper, for the plane
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Figure 1. Generation of gravity waves in water of variable depth

problem considered, the material Cartesian coordinates (Z1, Z2) are chosen
as independent variables of the problem. These coordinates designate the
fluid particles. The current positions of the fluid particles are described by
the spatial Cartesian coordinates (z1, z2), related to the material ones by

z1(Zγ , t) = Z1 + u(Z1, t), (1)

z2(Zγ , t) = Z2 + v(Zγ , t), γ = 1, 2,

where u(Z1, t) and v(Z1, Z2, t) are the horizontal and vertical components
of the displacement field, and t is time.
Assuming that a vertical material line of fluid particles remains vertical

during the entire motion of the fluid, the vertical displacement of an
arbitrary particle of the material line is expressed in the form

v(Z1, Z2, t) = h(Z1 + u) − h(Z1) +
w(Z1, t)

H − h(Z1)

[

Z2 − h(Z1)
]

, (2)

where h(Z1) defines the bottom elevation in the area of diminishing water
depth, and H denotes the constant water depth (see Figure 1).
The first two terms on the right-hand side of the equation describe the

rigid displacement of a vertical material line associated with a change in the
water depth, and the third term describes linear stretching, corresponding
to the vertical displacement w(Z1, t) of the material free surface of the fluid.
In this way, the vertical displacement also depends on the horizontal one.
The rigid body displacement is approximated by the formula

∆h = h(Z1 + u) − h(Z1) ∼= h(Z1) + h′(Z1) × u +
1

2
h′′(Z1) × u2, (3)

where the superscripts denote differentiation with respect to Z1.
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For the case of a constant bottom slope (h′ = const), the vertical
displacement of the water column is a linear function of the horizontal
displacement component. With respect to our laboratory experiments, we
henceforth confine our attention to the constant bottom slope. Knowing
the displacement field, we can calculate the Jacobian of the transformation

J = det[zi
,γ ] = (1 + u′)

(

1 + w
H − h

)

, i, γ = 1, 2, (4)

where the subscript γ = 1, 2 denotes differentiation with respect to
the material coordinates (Z1, Z2), and hereinafter the prime denotes
differentiation with respect to Z1. For an incompressible fluid the Jacobian
is equal to unity, and thus

w(Z1, t) = −(H − h)
u′

1 + u′
. (5)

From the substitution of equation (5) into relationship (2), we obtain the
following equation:

v(Z1, Z2, t) = u(Z1, t)h′ −
u′

1 + u′
(Z2 − h). (6)

With this formula, the description of the problem has been reduced to
a single unknown function u(Z1, t). In order to determine this function, it is
necessary to derive equations describing the fluid motion. For the problem
discussed here it is convenient to derive a relevant differential equation by
means of the Hamilton variational principle. In the variational approach
we have to calculate the Lagrangian density function, which is equal to the
difference between the kinetic and potential energies of the fluid within the
flow domain. Having determined the displacement field, it is a simple task
to calculate the potential energy as

Epot. = ρg

L
∫

0

H
∫

h(Z1)

[z2(Z1, Z2, t) − Z2]JdZ2dZ1, (7)

where ρ is the fluid density and g is the gravitational acceleration. In
a similar way, the kinetic energy is given by

Ekin. =
1

2
ρ

L
∫

0

H
∫

h(Z1)

[(u̇)2 + (v̇)2]JdZ2dZ1, (8)
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where the dots denote differentiation with respect to time.
Integration of equation (6) with respect to the vertical coordinate yields

Epot. =
1

2
ρgH

L
∫

0

[

2h′(1 − α)u − H(1 − α)2
u′

1 + u′

]

dZ1, (9)

where

α = α(Z1) =
h(Z1)

H
. (10)

Similarly, integration of equation (8) with respect to Z2 leads to the
expression

Ekin. =
1

2
ρH

L
∫

0

[

(1 + h′2)(1 − α)(u̇)2 − Hh′(1 − α)2
u̇u̇′

(1 + u′)2
+ (11)

+
1

3
H2(1 − α)3

(u̇′)2

(1 + u′)4

]

dZ1.

For the conservative system considered, the variation of the action integral
is defined by

δI = δ

ta
∫

0

(Ekin. − Epot.)dt = 0. (12)

Substituting equations (9) and (11) into the latter formula, and then
performing simple manipulations, gives

δI =
1

2
ρH

ta
∫

0

L
∫

0

[R1δu̇ + R2δu
′ + R3δu̇

′]dZ1dt+ (13)

+
1

2
ρgH

ta
∫

0

L
∫

0

[G1δu
′ − 2(1 − α)h′δu]dZ1dt = 0,

where

R1 = 2(1 + h′2)(1 − α)u̇ − Hh′(1 − α)2
u̇′

(1 + u′)2
, (14)
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R2 = 2Hh′(1 − α)2
u̇u̇′

(1 + u′)3
−

4

3
H2(1 − α)3

(u̇′)2

(1 + u′)5
,

R3 =
2

3
H2(1 − α)3

u̇′

(1 + u′)4
− Hh′(1 − α)2

u̇

(1 + u′)2
,

G1 = H(1 − α)2
1

(1 + u′)2
.

The terms entering the integrands in equation (13) may be expressed in
alternative forms. For example,

R1δu̇ =
∂

∂t
(R1δu) − Ṙ1δu. (15)

Similar relations can be obtained for the remaining terms. For the fluid
motion considered, the arbitrary variation δu vanishes at the end time
instants, i.e. for t = 0 and t = ta. At the same time, for a prescribed known
generator motion, we have δu|Z1=0 = 0. The condition of stationarity of the
action integral leads to the momentum equation

Ṙ1 + R′

2 − Ṙ′

3 + gG′

1 + 2gh′(1 − α) = 0, (16)

and the associated boundary condition is defined by

[R2 − Ṙ3 + gG1]|Z1=L = 0. (17)

One can check that boundary condition (17) is fulfilled at the shore point
Z1 = L identically. In order to express the momentum equation in the
form of a differential equation in the unknown function u(Z1, t), relation-
ships (14) have to be substituted into equation (16) and the prescribed
differentiation carried out with respect to the space and time coordinates
respectively. Simple manipulations give the momentum equation in the
following form:

{

1 + (h′)2
[

1 −
1

(1 + u′)2

]

− Hh′(1 − α)
1

(1 + u′)3
u′′

}

ü + (18)

+

[

H(1 − α)h′
1

(1 + u′)4
+

4

3
H2(1 − α)2

1

(1 + u′)5
u′′

]

ü′+

−
1

3
H2(1 − α)2

1

(1 + u′)4
ü′′ +

4

3
H2(1 − α)2

1

(1 + u′)5
u̇′′u̇′+
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+

{

Hh′(1 − α)

[

1

(1 + u′)3
−

2

(1 + u′)5

]

−
10

3
H2(1 − α)2

1

(1 + u′)6
u′′

}

(u̇′)2+

+g

{

h′

[

1 −
1

(1 + u′)2

]

− H(1 − α)
1

(1 + u′)3
u′′

}

= 0.

Up to this point no approximations have been introduced. For long water

waves and a small bottom slope (h′) it seems justified to assume that u′ is

a small quantity (u′ ≪ 1), and hence, all the fractions with the derivative

u′ in equation (18) can be approximated by the formula

1
(1 + u′)m

≈ 1 − mu′, |u′| ≪ 1. (19)

By substituting (19) into equation (18) and then neglecting the products of

the displacement spatial derivatives and the third and higher order terms

entering the equation, we arrive at the final form of the equation of the

problem investigated:

ü[1 + 2(h′)2u′ − Hh′(1 − α)u′′]+ (20)

+ü′

[

Hh′(1 − α) +
4

3
H2(1 − α)2u′′

]

+

−
1

3
H2ü′′(1 − α)2 + g[2h′u′ − H(1 − α)u′′] = 0.

The above momentum equation is a non-linear partial differential equation

with respect to the two independent variables of the model considered.

In order to examine some characteristic features of the equation, it is

reasonable to consider its linearized form. Thus, neglecting the second order

terms in the equation, one obtains

ü −
1

3
H2(1 − α)2ü′′ + Hh′(1 − α)ü′ + g[2h′u′ − H(1 − α)u′′] = 0. (21)

Although equation (21) is linear, it has variable coefficients and, therefore,

is still difficult to solve analytically. For this reason, in order to find

a solution to equation (21), we resort to a discrete formulation by applying

the finite difference method. In this discrete approach the derivatives

with respect to the material variable Z1 are replaced by the central finite

differences
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u′

k
∼=

1

2a
(uk+1 − uk−1), (22)

u′′

k
∼=

1

a2 (uk−1 − 2uk + uk+1),

where a is the constant horizontal spacing of the nodal points k =
0, 1, 2, ..., N , with k = 0 at the generator wall and k = N at the shoreline
Z1 = L (see Figure 1).
Accordingly, the partial differential equation is transformed into a finite

set of ordinary differential equations with respect to the time variable

[AM](ü) + [BM](u) = (P). (23)

The matrices [AM] and [BM] in the latter equation result from the
substitution of definitions (22) into equation (21). The vector (P) in (23)
describes a forcing term induced by the generator motion. The integration
of the linear system of equations in the time domain will be performed by
employing the Wilson θ method (Bathe 1982).
In order to find a solution to the non-linear equation (20), we also apply

the finite difference approximation of the spatial derivatives and, instead
of the partial differential equation, we will consider a set of the non-linear
ordinary differential equations

[NAM]

(

d2
u

dt2

)

= (NL), (24)

where the non-linear square ‘mass matrix’ [NAM] and the non-linear vector
(NL) depend on time and an unknown vector (u).
The non-linear system of differential equations is integrated in the

time domain by means of the fourth-order Runge-Kutta method (Björk
& Dahlquist 1983). In order to apply the method, the system of equations
is expressed in the form

dv

dt
= [NAM]−1(NL) = FA(u, v, t), (25)

du

dt
= v.

All components of the vectors u, v, and FA in the equations correspond to
the set of nodal points k = 1, 2, ..., N representing the finite fluid domain.
Knowing the solution at a given moment of time, say at t = tn, the method
allows us to calculate the solution vector at a subsequent instant of time at
t = tn+1 = tn + ∆t, where ∆t is the time step.
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3. Examples of discrete solutions

As mentioned above, the numerical solutions correspond directly to the
cases investigated in a laboratory flume. Thus, for the problem shown
schematically in Figure 1, we consider the fluid motion induced by a piston-
type generator starting to move from rest. In order to avoid discontinuities
of field variables, it is assumed that the generator moves in a very smooth
manner at the start of its motion; hence, not only the fluid velocity, but also
the fluid acceleration are assumed to be both zero at the initial instant of
time. Therefore, the motion of the generator wall takes the following form
(Wilde & Wilde 2001):

u0(t) = du[A(τ) cos ωt + D(τ) sin ωt], (26)

where du is a dimension unit (in our case one metre), ω is the angular
frequency, t is the time measured from the initial instant, τ is a dimensionless
time, and

A(τ) =
1

3!
τ3 exp(−τ), τ = ηt, (27)

D(τ) = 1 −

(

1 + τ +
1

2!
τ2 +

1

3!
τ3

)

exp(−τ).

The parameter η in the above relations is responsible for the growth in time
of the generator amplitude. In what follows we will consider the case of
η = 2. With increasing time, harmonic generation with unit amplitude and
the adopted frequency is achieved.

Numerical integration in the time domain of equations (25) gives the
horizontal displacements of the material nodal points. It should be noted
that the momentum equations presented above were derived under the
assumption that all the variables of the problem, together with their
derivatives, are continuous in space and time. It may happen, however,
that a wave climbing the slope will break down. Wave breaking depends
on the wavelength, its amplitude and the slope of the inclined plate. In
order to estimate the conditions for wave breaking, we use the parameter
introduced by Pelinovsky (1991)

Br =
ω2R

gβ2 . (28)

In this formula, obtained within the framework of shallow water theory, R
is the characteristic height of the wave run-up and β is the constant bottom
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slope. When Br > 1, wave breaking is inevitable. On the other hand, the

dissipation of energy due to wave breaking slows down shock wave formation,

and the critical value of the parameter may be assumed to be Br ∼= 1.5 for

a sea wave breaking (Pelinovsky 1991). With respect to this condition,

all the cases considered in this paper correspond to wave breaking. In

principle, wave breaking terminates the solution of the problem formulated

in a continuum. Fortunately, in the model considered, the problem’s

solution has been reduced to the horizontal displacement function u(Z1, t),

which is also continuous for wave breaking. The last feature enables us to

find a solution to the problem, at least within the approximation described

by the linear momentum equation (21). Examination of equation (5) shows,

however, that in calculating the free surface elevation the most important

parameter is the displacement derivative u′(Z1, t). This derivative also

enters the non-linear equation (20), derived under the assumption that the

derivative is a small quantity. Thus, in order to examine the solutions to

equations (21) and (20), we performed test computations for a wave of length

λ = 10H and a generator amplitude of 0.02 m. Some of the results obtained

in the computations are illustrated in the plots in Figures 2 and 3. The

plots in Figure 2 show the evolution in time of the horizontal displacements

of the chosen material points of the fluid domain. The fluid particles in the

area of the smallest water depth undergo the greatest departures from their

initial positions. Most of the plots presented in the figure have two different

scales of ordinates (one for points 0 ≤ Z1 ≤ OA and another for points

OA≤Z1 ≤OB). From the plots it may be seen that the fluid displacements

in the vicinity of the shore point (B in the figure) are one order of magnitude

greater than the displacements of the points corresponding to a greater

water depth. The area of large displacements is confined to a small area

in the vicinity of the shore point, approximately within 20% of the inclined

plate length. The displacements of the remaining fluid particles are of the

order of the generator amplitude. Knowing the displacement field, it is

a simple task to calculate its derivative with respect to the Z1-coordinate.

The plots of the derivative are shown in Figure 3. As in the case of the

◮

Figure 2. Horizontal displacements of fluid particles for a wave of length λ = 10H

at fixed instants of time. The solid line corresponds to the linear, and the dotted
line to the non-linear, momentum equations

Figure 3. Derivative with respect to Z1 of the horizontal displacements for a wave
of length λ = 10H at fixed instants of time. The solid line corresponds to the linear,
and the dotted line to the non-linear, momentum equations (see page 376)
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Figure 2.
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Figure 3.
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horizontal displacement, two different scales of ordinates have been used
in the derivative plots within the two areas of the fluid domain, i.e. for
0 ≤ Z1 ≤ OA and OA ≤ Z1 ≤ OB respectively. The main features of the
displacement distributions and their derivatives are similar. In particular,
the derivatives increase as the shore point is approached. With respect
to the displacement derivative, questions arise about the accuracy of the
numerical results. It may be seen in the plots in Figure 3 that the absolute
value of this derivative exceeds unity in the vicinity of the shore point.
This means that, in a formal way, the model developed above is capable of
calculating the horizontal displacements, but at the same time, it may fail
to deliver a proper description of the free surface elevation in the vicinity of
the shore point. It may be seen from equation (5) that, for the derivative
u′ approaching minus one, the elevation (vertical displacement w(Z1, t) of
the material free surface) becomes indefinite. In the discrete description
of the phenomenon, the indeterminacy of the elevation at a given point
may be taken to be the breaking point of a wave climbing the sloping
ramp. With smaller ramp slopes, better results of the discrete model can
be expected. Numerical tests show that for shorter waves, and for waves of
greater heights, the approximate solutions begin to deteriorate, which leads
to the breakdown of the computations. Such a case is especially important in
the numerical solution of the non-linear momentum equation (24) in which
the matrix [NAM] may become singular for shorter waves. Therefore, in
order to make the further discussion clear, we will confine our attention to
long waves of lengths equal to or exceeding 8H.

4. Experiments in a laboratory flume

The laboratory experiments were conducted in the wave flume at the
Institute of Hydro-Engineering of the Polish Academy of Sciences, Gdańsk.
The experimental setup is shown schematically in Figure 4. The wave flume
is 1.4 m high, 0.6 m wide and 64 m long. The motion of the fluid was induced
by a programmable piston-type wave generator placed at one end of the
flume. A rigid inclined plate with a slope of 10% was installed at a distance
of 12 m from the generator wall. Five wave gauges (Si, i = 1, ..., 5 in the
figure) were mounted alongside the water wave propagation path at fixed
distances from the generator plate. The run-up of the waves on the sloping
ramp was measured by means of a special conductivity gauge placed on the
ramp surface. The gauges registered the water elevation with a sampling
frequency of 200 Hz. All the experiments were carried out with a still
water depth of 0.6 m. The experiments were conducted for a chosen set
of amplitudes and frequencies of the wave generator motion. The set of
generator amplitudes was equal to (0.02, 0.04, 0.06) m, and the frequency set
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Figure 4. Experimental setup. The surface wave is measured by wave gauges Si

(i = 1, 2, ..., 5) and the wave run-up is recorded by conductivity gauge S6 placed
alongside the ramp

corresponded to waves of lengths λ = (4, 6, 8, 10, 12, 14, 16)H. The motion
of the fluid was induced by the generator starting to move at an initial
instant of time. With increasing time, the water wave front approached
the inclined ramp, after which the wave underwent the transformation
associated with diminishing water depth. Finally, the material shore point
reached the maximum displacement from its rest position, and then, the
reverse motion of the fluid began. The run-down flow assumes the form
of a tongue of a water stream of very small thickness. The next wave
climbing the sloping ramp meets the earlier wave propagating in the opposite
direction, and thus we have a certain interaction between the run-up and the
run-down waves on the inclined plate. The interaction causes a discontinuity
of the fluid flow. With this emerging discontinuity one can speak of the
breaking of waves approaching the shoaling water.

Some of the results obtained in the experiments are illustrated in
Figure 5, in which the plots show the distribution in time of the free surface
elevations and run-up for waves of length λ = 10H and two amplitudes of
the generator motion. It may be seen in the plots that the wave elevations
measured by the first five gauges at points far from the shore point are of
the order of the generation amplitude. The largest displacement is detected
by the gauge installed on the ramp. The average in time of the run-up
of water waves is greater than zero. In the plot of the run-up it may be
seen that the second wave arriving at the slope is considerably larger than
the average. The large wave is clearly associated with the transient motion
of the generator-fluid system starting to move from rest. The generator

◮

Figure 5. Distributions in time of the free surface at points Si(i = 1, ...5) and
the displacement of the shore point S6 along the slope recorded in experiments for
a wave of length λ = 10H , for two amplitudes of the generator motion
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motion, as described by equation (26) and illustrated in the upper plot in
Figure 2, approaches harmonic motion within approximately two periods

of wave generation. Moreover, water waves generated by a sinusoidally
moving wave maker are always accompanied by a free second order harmonic
wave (Madsen 1971, Massel 1982). Such a second harmonic wave (or

higher harmonics), however small, may be amplified in the experimental
investigations involving resonance to such an extent that it should be taken
into account. With increasing generator amplitude, the proportion of higher

order components in the description of the surface waves increases.

5. Comparison of theoretical results with experimental data

As mentioned in Sections 2 and 3, the theoretical approach is only
a certain approximation of the description of the transformation of water

waves propagating over a sloping beach. In particular, the governing
equations of the problem have been derived under the assumption that
the fluid flow may be regarded as a conservative mechanical system with

no dissipation of energy. On the other hand, all the waves considered
break on the slope. This means that the transformation of the waves

is accompanied by a loss of energy associated not only with frictional
forces, but with wave breaking as well (Massel & Pelinovsky 2001). Thus,
in order to improve the theoretical description, a dissipation mechanism

has to be taken into account. As a description of such a mechanism
associated with frictional forces and wave breaking is beyond the scope
of this paper, we restrict ourselves to a formal approach to the problem by

means of a substitute bottom shear stress added to the momentum equation.
Following Dingemans (1997), the bottom shear stress is assumed to take the
form of a quadratic law with respect to the velocity, that is,

τ = ε|u̇|u̇, (29)

where ε is a damping coefficient and u̇ is the horizontal velocity.

◮

Figure 6. Comparison of the free surface elevation and displacement of the shore
point predicted by the computations and those measured in laboratory experiments
for waves of length λ = 8H (a), λ = 10H (b) and λ = 12H (c) for a generator
amplitude d = 0.02 m

Figure 7. Comparison of the free surface elevation and displacement of the shore
point predicted by the computations and those measured in laboratory experiments
for waves of length λ = 8H (a), λ = 10H (b) and λ = 12H (c) for a generator
amplitude d = 0.06 m (see page 384)
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Figure 6.
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Figure 6. (continued)
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Figure 6. (continued)
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Figure 7.
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Figure 7. (continued)
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Figure 7. (continued)
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The above formula is only a crude approximation in the estimation of
damping forces associated with long waves propagating in shallow waters.
In the model considered here, a dissipation term enters the momentum
equation by means of the shear stresses added to the non-linear right
hand side of equation (24) (to the vector NL). The unknown coefficient in
equation (29) depends on the water depth, but in the case under discussion
it has been assumed that the coefficient is constant and that shear forces
are calculated only at nodal points where the bottom slope is different from
zero. In order to assess the effects of damping forces on the theoretical
results, numerical tests were performed for selected values of the coefficient.
It was found that for values of the coefficient within the range 0.2 ≤ ε ≤ 1
the free surface elevations calculated at the wave gauges S1–S5 were almost
unchanged. At the same time, there was a 30 − 50% reduction in the wave
run-up, dependent on wavelength and height, as compared to solutions
for a purely conservative system. Therefore, in our further discussion,
we confine our attention to the value ε = 1 in equation (29). Some of
the results obtained in computations were compared with data recorded in
experiments. The plots in Figures 6 and 7 illustrate the distribution in time
of the free surface elevations calculated and measured at the spatial points of
the hydraulic flume in which wave gauges were installed. It may be seen in
the plots that the theoretical solution, based on the fundamental kinematic
assumption of ‘columnar’ motion, describes satisfactorily the main features
of long wave transformation. But at the same time, the theoretical model
fails to describe the run-up of the waves with sufficient accuracy. In the
area of smaller water depth, higher-order components emerge that cannot
be properly described by the model presented above. Such components also
emerge in the deeper fluid area for shorter waves, and for waves of higher
amplitudes.

6. Concluding remarks

A water wave advancing up a sloping beach undergoes a transformation
resulting from the diminishing water depth. The transformation depends on
the slope of the beach and the characteristics of the arriving wave. With the
water depth diminishing towards the shoreline, the wave grows in steepness,
which usually leads to its breaking. In order to estimate the changes in
the wave approaching the shore point, both theoretical and experimental
investigations were carried out. In the theoretical description we follow the
fundamental kinematic assumption of ‘columnar motion’, which allows us
to reduce the two-dimensional problem of long wave propagation to a single
unknown variable u(Z1, t) defining the horizontal displacement of a vertical
column of water. The associated momentum equation is derived with the
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aid of Hamilton’s principle. The most important parameter in calculating
the free surface elevation and the run-up of waves climbing a sloping beach
is the derivative of the displacement function with respect to the horizontal
coordinate. Comparison of the numerical results with the data obtained
in the experiments shows that to obtain a solution of acceptable accuracy
the derivative should be a small number (|u′| < 1). For the long waves
considered in this study, the last condition was satisfied for almost the
entire fluid domain, except for a small area in the vicinity of the shore point.
Thus, when compared to experiments in a laboratory flume, the theoretical
model provides plausible numerical solutions for the free surface elevations
at points far away from the shore point but fails to deliver sufficiently good
results for the run-up of the waves. In order to calculate the wave run-up
a more sophisticated theoretical description is needed. The results presented
above indicate that the method based on the ‘columnar’ assumption of the
fluid motion and Hamilton’s principle formulated in the material variables
has proved to be a useful tool for describing the principal features of long
wave transformation. In particular, the theoretical model is also capable of
describing fluid motion for waves breaking on the slope. But at the same
time, to obtain a better description, the governing equations of motion,
derived for a conservative system, should be supplemented by dissipation
terms describing the loss of energy associated with friction forces and the
breaking of surface waves.
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