PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 49 | 1 |

Tytuł artykułu

A synthetic wheat with 56 chromosomes derived from Triticum turgidum and Aegilops tauschii

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
By colchicine treatment of hybrids between Triticum turgidum and Aegilops tauschii (as seedlings), a fertile wheat plant (SHW-L2) carrying 56 chromosomes was artificially synthesized. At metaphase I of 50 pollen mother cells, the 56 chromosomes of the new wheat SHW-L2 showed a mean pairing configuration of 2.82 univalents, 6.18 rod bivalents, 19.39 ring bivalents, 0.5 trivalents, and 0.14 quadrivalents. Cytological analyses suggested that SHW-L2 had additional 7 pairs of chromosomes from the A and D genome besides the 42 chromosomes of common wheat. The special chromosome constitution of SHW-L2 may be derived from the chromosome doubling by the colchicine treatment of seedlings and then spontaneous doubling of gametes.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

49

Numer

1

Opis fizyczny

p.41-44,fig.,ref.

Twórcy

autor
  • Triticeae Research Institute, Sichuan Agricultural University, Dujiangyan city, Sichuan, China
  • Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan Sichuan, China
autor
  • Triticeae Research Institute, Sichuan Agricultural University, Dujiangyan city, Sichuan, China
  • Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan Sichuan, China
autor
  • Triticeae Research Institute, Sichuan Agricultural University, Dujiangyan city, Sichuan, China
  • Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan Sichuan, China
autor
  • Triticeae Research Institute, Sichuan Agricultural University, Dujiangyan city, Sichuan, China
  • Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan Sichuan, China
autor
  • Triticeae Research Institute, Sichuan Agricultural University, Dujiangyan city, Sichuan, China
  • Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan Sichuan, China

Bibliografia

  • Ayal S, Ophir R, Levy AA, 2005. Genomics of tetraploid wheat domestication. In: Tsunewaki K, ed. Frontiers of Wheat Bioscience, the 100th Memorial Issue of Wheat Information Service, Kihara Memorial Foundation for the Advancement of Life Sciences, Yokohama, Japan: 185-203.
  • Dhaliwal HS, Singh H, Gill KS, Randhawa HS, 1993. Evaluation and cataloguing of wheat germplasm for disease resistance and quality. In: Damania AB, ed. Biodiversity and wheat improvement. Chichester, UK, John Wiley & Sons: 103-109.
  • Dvorak J, 1998. Genome analysis in the Triticum- Aegilops alliance. In: Slinkard AE, ed. Proceedings of the 9th International Wheat Genetics Symposium (Saskatoon, Saskatchewan, Canada). University of Saskatchewan, University Extension Press: 8-11.
  • Feldman M, 2001. The origin of cultivated wheat. In: Bonjean AP, Angus WJ, eds. The World Wheat Book. Paris., Lavoisier Publishing: 1-56.
  • Gill BS, Friebe B, Endo TR, 1991. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34: 830-839.
  • Heun M, Schafer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F, 1997. Site of the einkorn wheat domestication identified by DNA fingerprinting. Science 278: 1312-1314.
  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill BS, Haselkorn B, Gomicki P, 2002. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of wheat. Proc Natl Acad Sci USA 99: 8133-8138.
  • Kema GHJ, Lange W, Silfhout CH, 1995. Differential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp. dicoccoides and Aegilops squarrosa. Phytopathology 85: 425-429.
  • Kihara H, 1944. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agrie Hortic (Tokyo) 19: 889-890.
  • Kihara H, Lilienfeld F, 1949. A new synthesized 6x-wheat. Hereditas (suppl): 307-319.
  • Lage J, Warburton ML, Crossa J, Skovmand B, Andersen SB, 2003. Assessment of genetic diversity in synthetic hexaploid wheats and their Triticum dicoccum and Aegilops tauschii parents using AFLPs and agronomic traits. Euphytica 34: 305-317.
  • Lange W, Jochemsen G, 1992. Use of the gene pools of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa for the breeding of common wheat (T. aestivum), through chromosome-doubled hybrids I. Two strategies for the production of the amphiploids. Euphytica 59: 197-212.
  • Liu DC, Lan XJ, Yang ZJ, Zheng YL, Wei YM, Zhou YH, 2002. A unique Aegilops tauschii genotype needless to embryo rescue in cross with wheat. Acta Bot Sin 44: 508-613.
  • Liu DC, Yen C, Yang JL, Zheng YL, Lan XJ, 1999. The chromosomal distribution of crossability genes in tetraploid wheat Triticum turgidum L. cv. Ailanmai native to Sichuan, China. Euphytica 108: 79-82.
  • McFadden ES, Sears ER, 1944. The artificial synthesis of Triticum spelta. Ree Genet Soc Am 13: 26-27.
  • Mujeeb-Kazi A, Rosas V, Roldan S, 1996. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s. lat. × T. tauschii-, 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Res Crop Evol 43: 129-134.
  • Ogbonnaya FC, Halloran GM, Lagudah ES, 2005. D genome of wheat - 60 years on from Kihara, Sears and McFadden. In: Tsunewaki K, ed. Frontiers of Wheat Bioscience, the 100th Memorial Issue of Wheat Information Service, Kihara Memorial Foundation for the Advancement of Life Sciences, Yokohama, Japan: 205-220.
  • Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, et al. 2005. Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110: 859-864.
  • Riley R, Chapman V, 1958. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 192: 713-715.
  • Warburton ML, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, et al. 2006. Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149: 289-301.
  • Zhang LQ, Liu DC, Yan ZH, Lan XJ, Zheng YL, Zhou YH, 2004. Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Science in China Ser C Life Science 47: 553-561.
  • Zhang LQ, Yen Y, Zheng YL, Liu DC, 2007. Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sex Plant Reprod 20: 159-166.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-43fc6892-0d79-4cb5-854f-f3128cc7aa54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.