PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 27 | 1 |

Tytuł artykułu

cDNA array analysis of mercury- and ozone-induced genes in Arabidopsis thaliana

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Selected cDNA clones of Arabidopsis thaliana, isolated previously by suppression subtractive hybridisation, were used to differentiate between abiotic stress factors. Changes in expression patterns of 79 genes were examined by array analysis in Arabidopsis thaliana after fumigation with ozone and after short- or long-term mercuric-ion exposure. Substantial changes in the abundance of 42 transcripts were recorded in response to the treatments, and 6 transcript clusters were observed. The abundance of 37 mRNAs was increased more then 1.5-fold, whereas that of 5 mRNAs was reduced. The abundances of 5, 6 and 9 mRNAs were specifically in creased by short-term mercury application, ozone fumigation, and long-term mercuric-ion exposure, respectively. The transcription of the other 5 transcripts was induced by both ozone and short-term mercuric-ion treatment. The abundance of 10 different mRNAs was in creased by the different mercuric-ion applications. Two transcripts were induced by ozone fumigation, as well as long-term, mercury treatment. Finally, 5 transcripts were repressed by ozone exposure, and 3 out of them by short-term mercuric-ion treatment. These results show that the array technique can be used to analyse the expression pattern in Arabidopsis thaliana under ozone and mercuric-ion stress. Searches against the Arabidopsis database furthermore provide a classification of most genes. In addition possible cis-acting regulatory elements were identified by an in silico approach using the MIPS Arabidopsis thaliana database.

Wydawca

-

Rocznik

Tom

27

Numer

1

Opis fizyczny

p.45-51,fig.,ref.

Twórcy

  • GSF-National Research Center for Environment and Health, Ingolstadter Landstrasse 1, D-85764 Neuherberg, Germany
autor
autor
autor

Bibliografia

  • Baldwin D., Crane V., Rice D. 1999. A comparison of gel-based, nylon filters and microarray techniques to detect differential RNA expression in plants. Curr. Opin. Plant Biol. 2: 96-103.
  • Bizily S.P., Rugh C.L., Meagher R.B. 2000. Phytodetoxification of hazard ous organomercurials by genetically engineered plants. Nature Biotech. 18: 213-217.
  • Brosché M., Strid Å. 1999. Cloning, expression, and molecular characterization of a small peagene family regulated by low levels of ultraviolet B radiation and other stresses. Plant Physiol. 121: 479-487.
  • Brosché M., Schuler M.A., Kalbina I., Connor L., Strid Å. 2002. Gene regulation by low level UV-B radiation: identification by DNA array analysis. Photochem. Photobiol. Sci. 1: 656-664.
  • Cushman J.C., Bohnert H.J. 2000. Genomic approaches to plant stress tolerance. Curr. Opin. Plant Biol. 3: 117-124.
  • Desprez T., Amselem J., Caboche M., Höfte H. 1998. Differential gene expression in Arabidopsis monitored using cDNA arrays. Plant J. 14: 643-652.
  • Didierjean L., Frendo P., Nasser W., Genot G., Marivet J., Burkard G. 1996. Heavy-metal-responsive genes in maize: identification and comparison of their expression upon various forms of abiotic stress. Planta 199: 1-8.
  • Donson J., Fang Y., Espiritu-Santo G., Xing W., Salazar A., Miyamoto S., Armendarez V., Volkmuth W. 2002. Comprehensive gene expression analysis by transcript profiling. Plant Mol. Biol. 48: 75-97.
  • Ernst W.H.O. 1996. Schwermetalle. In: Stress bei Pflanzen: Ökologie, Physiologie, Biochemie, Molekularbiologie, eds. C. Brunold, A. Rüegsegger, R. Brändle, Verlag Paul Haupt, Bern: 191-219.
  • Ernst D., Grimmig B., Heidenreich B., Schubert, R., Sandermann H. 1999. Ozone-induced genes: mechanisms and biotechnological applications. In: Plant Responses to Environmental Stress, eds. M.F. Smallwood, C.M. Calvert, D.J. Bowles, BIOS Scientific Publishers, Oxford: 33-41.
  • Eulgem T., Rushton P.J., Schmelzer E., Hahlbrock K., Somssich I.E. 1999. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J. 18: 4689-4699.
  • Eulgem T., Rushton P.J., Robatzek S., Somssich I.E. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199-206.
  • Gibeaut D.M., Hulett J., Cramer G.R., Seemann J.T. 1997. Maximal biomass of Arabidopsis t haliana using a simple, low-maintenance hydroponic method and favourable environmental conditions. Plant Physiol. 115: 317-319.
  • Heidenreich B., Seidlitz H., Ernst D., Sandermann H. 1999. Mercuric-ion-induced gene expression in Arabidopsis thaliana. Intern. J. Phytorem. 1: 153-167.
  • Heidenreich B., Mayer K., Sandermann H., Ernst D. 2001. Mercuric-induced genes in Arabidopsis thaliana: identification of induced genes upon long-term mercuric-ion exposure. Plant Cell Environ. 24: 1227-1234.
  • Krizek B.A., Prost V., Joshi R.M., Stoming T., Glenn T.C. 2003. Developing transgenic arabidopsis plants to be metal-specific bioindicators. Environ. Toxicol. Chem. 22: 175-181.
  • Langebartels C., Kerner K., Leonardi S., Schraudner M., Trost M., Heller W., Sandermann H. 1991. Biochemical plant responses to ozone. I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol. 95: 882-889.
  • Langebartels C., Anegg S., Hahn K., Chiron H., Drouet A., Ernst D., Heller W., Schnitzler J.-P., Schubert R., Zinser C., Sandermann H. 2001. Ozone and UV-B responses of trees and the question of forest sustainability. In: Trends in European Forest Tree Physiology Research, EUROSILVA, eds. S. Huttunen, S.H. Heikkilä, J. Bucher, B. Sundberg, P. Jarvi, R. Matyssek, R, Kluwer Academic Publishers, Dordrecht: 157-166.
  • Langebartels C., Schraudner M., Heller W., Ernst D., Sandermann H. 2002. Oxidative stress and defense reactions in plants exposed to air pollutants and UV-B radiation. In: Oxidative Stress in Plants, eds. D. Inzé, M. van Montagu, Tay lor & Fran cis, Lon don: 105-135.
  • Matsuyama T., Tamaoki M., Nakajima N., Aono M., Kubo, A., Moriya S., Ichahara T., Suzuki O., Saji H. 2002. cDNA microarray assessment for ozone-stressed Arabidopsis thaliana. Environ. Pollut. 117: 191-194.
  • Ohlrogge J., Benning C. 2000. Unravelling plant metabolism by EST analysis. Curr. Opin. Plant Biol. 3: 224-228.
  • Pell E.J., Schlagnhaufer C.D., Arteca R.N. 1997. Ozone-induced oxidative stress: Mechanisms of action and reaction. Physiol. Plant. 100: 264-273.
  • Pilon-Smits E., Pilon M. 2000. Breeding mercury-breathing plants for environmental cleanup. Trends Plant Sci. 5: 235-236.
  • Rao M.V., Davis K.R. 2001. The physiology of ozone induced cell death. Planta 213: 682-690.
  • Rao M.V., Koch J.R., Davis K.R. 2000. Ozone: a tool for probing programmed cell death in plants. Plant Mol. Biol. 44: 345-358.
  • Reymond P., Weber H., Damond M., Farmer E.E. 2000. Differential gene expression in response to mechanical wounding and insect feeding. Plant Cell 12: 707-719.
  • Richmond T., Somerville S. 2000. Chasing the dream: plant EST microarrays. Curr. Opin. Plant Biol. 3: 108-116.
  • Sävenstrand H., Brosché M., Ängehagen M., Strid A. 2000. Molecular markers for ozone stress isolated by suppression subtractive hybridization: specificity of gene expression and identification of a novel stress-regulated gene. Plant Cell Environ. 23: 689-700.
  • Salt D.E., Smith R.D., Raskin I. 1998. Phytoremediation. Annual Review of Plant Physiology and Plant Mol. Biol. 49: 643-668.
  • Sandermann H. 2000. Ozone/biotic desease interactions: molecular biomarkers as a new experimental tool. Environ. Pollut. 108: 327-332.
  • Sandermann H., Ernst D., Heller W., Langebartels C. 1998. Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci. 3: 47-50.
  • Schenk P.M., Kazan K., Wilson I., Anderson J.P., Richmond T., Somerville S.C. 2000. Coordinated plant defense responses in Arabidopsis thaliana revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97: 11655-11660.
  • Schoof H., Zaccaria P., Gundlach, H., Lemcke K., Rudd S., Kolesov G., Arnold R., Mewes H.W., Mayer K.F. 2002. MIPS Arabidopsis thaliana Database (MatDB): an integrated biological knowledge resource based on the first completed plant genome. Nucl. Acid Res. 30: 91-93.
  • Seki M., Narasuka M., Abe H., Kasuga M., Yamaguchi-Shinozaki K., Carninci P., Hayshizaki Y., Shinozaki K. 2001. Monitoring the expression pattern of 1300 arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13: 61-72.
  • Thijs G., Marchal K., Lescot M., Rombaut S., De Moor B., Rouzé P., Moreau Y. 2002. A Gibbs sampling method to detect overrepresented motifs in the upstream regions of coexpressed genes. J. Comput. Biol. 9: 447-464.
  • Wollgiehn R., Neumann D. 1999. Metal stress response and tolerance of cultured cells from Silene vulgaris and Lycopersicon peruvianum: Role of heat stress proteins. J. Plant Physiol. 154: 547-553.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-43f0d319-de75-43e5-bd3b-562261fcf8c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.