PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2002 | 47 |

Tytuł artykułu

Ozone effects on trees, where uptake and detoxification meet

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Ozone is the most important air pollutant and its concentration in ambient air is still rising. Ozone concentrations measured at reference height (50 m is EMEP ozone modelling height), do not reflect the real concentration at the top of the vegetative canopy and do not provide sufficient information about the ozone fluxentering the leaves. Modelling stomatal conductance is leading to estimations of cumulative ozone uptake and enables much better to evaluate the impact of ozone on trees. The negative impact of ozone exposure has a measurable effect on physiological processes such as stomatal conductance, photosynthesis and respiration. Disturbance of the basic physiological processes is leading to growth and wood production losses. There have been several attempts to establish critical levels (CL) for ozone effects on forest trees. Average concentrations and cumulative exposure indices are satisfactory to some extent, but do not fully describe the potential impact of ozone exposure. Much more promising is an evaluation based on the effective ozone flux, which is a function of the absorbed ozone flux and the defensive response. Ozone uptake takes place primarily through the stomata and reactions of ozone with hydrocarbons released by the plant cells and transformations of dissolved ozone in the apoplastic fluid create many reactive oxygen species of which free radicals are able to initiate membrane lipid peroxidation and destruction of cell membranes. The defence of a plant against absorbed ozone starts in the apoplastic fluid. Ascorbate is believed to be a very important radical scavenger avoiding detrimental effects of reactive oxygen species to the membranes. Other important antioxidants are phenolics. The defensive response can be linked to the abundance of ascorbate or the ability of the plants to regenerate (reduce) ascorbate from monodehydroascorbate and dehydroascorbate. The reduction of dehydroascorbate takes place in the symplast where ascorbate can be transported back through the plasma membrane into the apoplast. Ozone exposure also causes oxidative stress of the plant cell interior by the formation of reactive oxygen species. Plants can cope with those toxic substances in the symplast by using antioxidants such as ascorbate, -tocopherol, glutathione and carotenoids and enzymes such as superoxide dismutases, catalases and several peroxidases. The complexity of the apoplastic and symplastic antioxidative capacity with different turnover rates and transport of antioxidants makes it difficult to determine the total antioxidative power.

Wydawca

-

Czasopismo

Rocznik

Tom

47

Opis fizyczny

p.9-19,ref.

Twórcy

  • Veterinary and Agrochemical Research Centre, Tervuren, Belgium
autor
autor
autor
autor

Bibliografia

  • Alsher R.G., Donahue J.L., Cramer C.L. 1998. Molecular responses to reactive oxygen species: multifaceted changes in gene expression. In: Responses of plant metabolism to air pollution and global change. De Kok L. J., Stulen I. (eds.). Backhuys Publ., Leiden, Netherlands, pp. 233–240.
  • Amthor J.S., Cumming J.R. 1988. Low levels of ozone increase bean leaf maintenance respiration. Canadian Journal of Botany 66: 724–726.
  • Anfossi D., Sandroni S., Viarengo S. 1991. Tropospheric ozone in the nineteenth century: the Moncalieri series. Journal of Geophysical Research 96D: 17349–17352.
  • Arnao M.B., Cano A., Acosta M. 1999. Methods to measure the antioxidant activity in plant material: a comparative discussion. Free Radical Research 31: 589–596.
  • Asard H., Horemans N., Preger V., Trost P. 1998. Plasmamembrane b-type cytochromes. In: Plasma membrane redoxsystems and their role in biological stress and disease. Asard, H., Bérczi, A., Caubergs, R. J. (eds). Kluwer Academic Publishers, Dordrecht, pp. 1–31.
  • Ashmore M.R., Bell J.N. 1991. The role of ozone in global change. Annals of Botany 67: 39–48.
  • Baucher M., Van Doorsselaere J., Gielen J., Van Montagu M., Inzé D., Boerjan, W. 1995. Genomic Nucleotide Sequence of an Arabidopsis thaliana Gene Encoding a Cinnamyl Alcohol Dehydrogenase. Plant Physiology 107: 285–286.
  • Baucher M., Chabbert B., Pilate G., Van Doorsselaere J., Tollier M.-T., Petit-Conil M., Cornu D., Monties B., Van Montagu M., Inzé D., Jouanin L., Boerjan W. 1996. Red xylem and Higher Lignin Extractability by Down-Regulating a Cinnamyl Alcohol Dehydrogenase in Poplar. Plant Physiology 112: 1479–1490.
  • Baucher M., Monties B., Van Montagu M., Boerjan W. 1998. Biosynthesis and Genetic Engineering of Lignin. Critical Reviews in Plant Sciences 17: 125–197.
  • Baudet A.-M., 1998. A new view of lignification. Trends in Plant Science 3,2: 67–71.
  • Biagioni M., Nali C., Heimler D., Lorenzini G., 1997. PAL activity and differential ozone sensitivity in tobacco, bean and poplar. Journal of Phytopathology 145: 533–539
  • Bielski B. H. J., Allen A. O., Schwarz H. A.1981. Mechanism of disproportionation of ascorbate radicals. Journal American Chemical Society 103: 3516–3518.
  • Bors W., Langebartels C., Michel C., Sandermann H., Jr. 1989. Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28: 1589–1595.
  • Bortier K., Ceulemans R., De Temmerman L. 2000a. Effects of tropospheric ozone on woody plants. In: Environmental Pollution and Plant Responses. Agrawal S.B., Agrawal M. (eds.), CRC Press LLC, Boca Raton, USA, pp. 153–182.
  • Bortier K., De Temmerman L., Ceulemans R. 2000b. Effects of ozone exposure in open-top chambers on poplar (Populus nigra) and beech (Fagus sylvatica): a comparison. Environmental Pollution 109: 509–516.
  • Bortier K., Ceulemans R., De Temmerman L. 2000c. Effects of ozone exposure on growth and photosynthesis of beech seedlings (Fagus sylvatica). New Phytologist 146: 271–280.
  • Bortier K., Vandermeiren K., De Temmerman L., Ceulemans R. 2001a. Growth, photosynthesis and ozone uptake of young beech (Fagus sylvatica L.) in response to different ozone exposures. Trees 15: 75–82.
  • Bortier K., Dekelver G., De Temmerman L., Ceulemans R. 2001b. Stem injection of Populus nigra with EDU to study ozone effects under field conditions. Environmental Pollutution 111: 199–208
  • Broadmeadow M. 1998. Ozone and forest trees. New Phytologist 139: 123–125.
  • Castillo F. J., Greppin H., 1988. Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure. Environmental and Experimental Botany 28: 231–238.
  • De Temmerman L., Pihl Karlsson G., Donnelly A., Ojanperä K., Jäger H.-J., Finnan J., Ball G. 2002. Factors influencing visible ozone injury on potato including the interaction with carbon dioxide. European Journal of Agronomy (in press)
  • Deutsch, J. C. 1998. Oxygen-accepting antioxidant which arise during ascorbate oxidation. Analytical Biochemistry 265: 238–245.
  • Dixon D. P., Cummins I., Cole D. J., Edwards R. 1998. Glutathione-mediated detoxification systems in plants. Current Opinion in Plant Biology 1: 258–266.
  • Elstner E.F., Osswald W., Youngman R.J. 1985. Basic mechanisms of pigment bleaching and loss of structural resistance in spruce (Picea abies) needles: advances in phytomedical diagnostics. Experientia 41: 591–597
  • Emberson L.D., Ashmore M.R., Cambridge H.M. 1998. Development of methodologies for Mapping Level II Critical Levels of Ozone. (DETR Report No EPG 1/3/82). Imperial College of London, 113 pp.
  • Emberson L.D., Wieser G., Ashmore M.R. 2000a. Modelling of stomatal conductance and ozone flux of Norway spruce: comparison with field data. Environmental Pollution 109: 393–402.
  • Emberson L.D., Ashmore M.R., Cambridge H.M., Simpson D., Tuovinen J.P. 2000b. Modelling stomatal ozone flux across Europe. Environmental Pollution 109: 403–413.
  • Farage P.K., Long S.P., Lechner E.G., Baker N.R. 1991. The sequence of change within the photosynthetic aparatus of wheat following short-term exposure to ozone. Plant Physiology 95: 529–535
  • Foyer C. H., Lopez-Delgado H., Dat J. F., Scott I. M. 1997. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiologia Plantarum 100: 241–254.
  • Fredericksen T.S., Skelly J.M., Steiner K.C., Kolb T.E., Kouterick K.B. 1996. Size-mediated foliar response to ozone in black cherry trees. Environmental Pollution 91: 53–63.
  • Fuhrer, J. 1996. The critical level of ozone on crops, and the transfer to mapping. In: Critical levels for ozone in Europe: Testing and finalizing the concepts. Kärenlampi L., Skärby, L. (eds.). UN-ECE workshop report. Univ of Kuopio, Dept. of Ecol. and Environ. Sci., pp. 27–43.
  • Fuhrer J. Skärby L., Ashmore M.R. 1997. Critical levels for ozone, effects on vegetation in Europe. Environmental Pollution 97: 91–106.
  • Grünhage L., Haenel H.-D. 1997. PLATIN (Plant-Atmosphere Interaction) I: a model of plant-atmosphere interaction for estimating absorbed doses of gaseous air pollutants. Environmental Pollution 98: 37–50.
  • Grünhage L., Jäger H.J., Haenel H.-D., Hanewald K., Krupa S. 1997. PLATIN (Plant-Atmosphere Interaction) II: Co-occurrence of high ambient ozone concentrations and factors limiting plant absorbed dose. Environmental Pollution 98: 51–60.
  • Grünhage L., Haenel H.-D., Jäger H.J. 2000. The exchange of ozone between vegetation and atmosphere: micrometeorological measurement techniques and models. Environmental Pollution 109: 373–392.
  • Grünhage L., Krause G.H.M., Köllner B., Bender J., Weigel H.-J., Jäger H.-J., Guderian R. 2001. A new flux-oriented concept to derive critical levels for ozone to protect vegetation. Environmental Pollution 111: 355–362.
  • Heath R.L. 1994a. Alteration of plant metabolism by ozone exposure. In: Plant responses to the gaseous environment. Alscher A.R., Wellburn A.R. (eds.). Chapman and Hall, London, pp. 121–145.
  • Heath R.L. 1994b. Possible mechanisms for inhibition of photosynthesis by ozone. Photosynthesis Research 39, 439–451.
  • Heck W.W., Cowling E.B. 1997. The need for a Long Term Cumulative Secondary Ozone Standard – an Ecological Perspective. Air and Waste Management Association, EM, January 1997, pp. 23–33.
  • Hewitt N., Terry G. 1992. Understanding ozone plant chemistry. Environmental Science and Technology 26: 1890–1891.
  • Hewitt C.N., Kok G.L., Fall R. 1990. Hydroperoxides in plants exposed to ozone mediate air pollution damage to alkene emitters. Nature 344: 56–58
  • Hippeli S., Elstner E.F. 1996. Mechanisms of oxygen activation during plant stress: biochemical effects of air pollutants. Journal of Plant Physiology 148: 249–257.
  • Horemans N., Asard H., Caubergs R. J. 1998. Carrier mediated uptake of dehydroascorbate into higher plant plasma membrane vesicles shows trans-stimulation. Febs Letters 421: 41–44.
  • Horemans N., Foyer C. H., Asard H. 2000. Transport and action of ascorbate at the plant plasma membrane. Trends in Plant Science 5/6: 263–267.
  • Hough A.M., Derwent R.G. 1990. Changes in the global concentration of tropospheric ozone due to human activities. Nature 344: 645–648.
  • Imai T., Kington-Smith A. H., Foyer C. H. 1999. Ascorbate metabolism in potato leaves supplied with exogenous ascorbate Free Radical Research 31: 171–179.
  • Jamaï A., Tommasini R., Martinoia E., Delrot S. 1996. Characterisation of glutathione uptake in broad bean leaf protoplasts. Plant Physiology 111: 1145–1152.
  • Jarvis P.G. 1976. The interpretation of variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Royal Soc. London B 273, pp. 593–610.
  • Kanofsky J. R., Sima P.D. 1991. Singlet oxygen production from the reactions of ozone with biological molecules. Journal of Biological Chemistry 266: 9039–9042.
  • Karlsson P. E., Pleijel H., Pihl Karlsson G., Medin E.L., Skarby L. 2000. Simulations of stomatal conductance and ozone uptake to Norway spruce saplings in open-top chambers. Environmental Pollution 109: 443–451.
  • Koch J.R., Scherzer A.J., Eshita S.M., Davis K.R. 1998. Ozone sensitivity in hybrid poplar is correlated with a lack of defence gene activation. Plant Physiology 118: 1243–1252.
  • Körner C., Peterer J., Altrichter C.H., Meusburger A., Slovik S., Zoschg M. 1995. A simple empirical model to estimate annual dry deposition of atmospheric pollutants in needles of spruce and pine. Allgemeine Forst- und Jagdzeitung 166: 1–9.
  • Krinsky N., 1979. Biological roles of singlet oxygen. In: singlet oxygen. Wasserman H and Murray R.W. (eds.). Academic Press, New York, pp. 597–641.
  • Kronfuss G., Wieser G., Havranek W.M., Polle A. 1996. Effects of ozone and mild drought stress on total and apoplastic guiacol peroxidase and lipid peroxidation in current year needles of young Norway spruce (Picea abies L., karst.). Journal of Plant Physiology 148: 203.
  • Lagrimini L. M., Burkhart W., Moyer M, Rothstein S. 1987. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: molecular analysis and tissue specific expression. Proceeding of the National Academy of Science of U.S.A. 84: 7542–7546.
  • Lagrimini L.M., Bradford S., Rothstein S. 1990. Peroxidase-induced wilting in transgenic tobacco plants. Plant Cell 2: 7–18.
  • Lagrimini L.M. 1991. Wound-induced deposition in polyphenols in transgenic plants overexpressing peroxidase. Plant Physiology 96: 577–583.
  • Langebartels C., Kerner K., Leonardi S., Schrauder M., Trost M., Heller W., Sandermann H. 1991. Biochemical plant responses to ozone. I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiology 95: 882–889.
  • Low P.S., Merida J.R. 1996. The oxidative burst in plant defence: function and signal transduction, Physiologia Plantarum 96, 533–542.
  • Luwe M.W.F., Heber U. 1995. Ozone detoxification in the apoplast and symplast of spinach, broad bean and beech leaves at ambient and elevated concentrations of ozone in air. Planta 197: 448–455.
  • Lyons T., Plöchl M., Turcsányi E., Barnes J. 2000. Extracellular antioxidants: a protective screen against ozone? In: Environmental Pollution and Plant Responses, Agrawal S.B., Agrawal, M. (eds.). CRC Press LLC, Boca Raton, pp.183–201.
  • Mächler F., Waseschan M.R., Krieg F., Oertli J.J. 1995. Damage by ozone and protection by ascorbic acid in barley leaves. Journal of Plant Physiology 147: 469–493.
  • Mäder M., Füssl R. 1982. Role of peroxidase in the lignification of tobacco cells. II Regulation by phenolic compounds. Plant Physiology 70: 1132–1134.
  • Marenco A., Gouget H., Nédélec P., Pagés J.P., Karcher F. 1994. Evidence of a long term increase in tropospheric ozone from Pic du Midi data. Journal of Geophysical Research-Atmospheres 99: 16617–16632.
  • Mehlhorn H., Wellburn A.R., 1987. Stress ethylene formation determines plant sensitivity to ozone. Nature 327: 417–418
  • Mehlhorn H.O., Shea J.M., Wellburn A.R. 1991. Atmospheric ozone interacts with stress ethylene formation by plants to cause visible plant injury. Journal of Experimental Botany 42: 234, 17–24.
  • Moldau H. 1999. Ozone detoxification in the mesophyll cell wall during a simulated oxidative burst. Free Radical Research 31: 19–24.
  • Mudd J.B. 1998. On ozone. In: Responses of plant metabolism to air pollution and global change. De Kok L. J., Stulen I. (eds.). Backhuys Publ., Leiden, Netherlands: XII–XIX.
  • Musselman R.C., Massman W.J. 1999. Ozone fluxto vegetation and its relationship to plant response and ambient air quality standards. Atmospheric Environment 33: 65–73.
  • Pallanca J.E., Smirnoff N. 2000. The control of ascorbic acid synthesis and turnover in pea seedlings. Journal of Experimental Botany 51: 669–674.
  • Pleijel H., Danielsson H., Pihl Karlsson G., Gelang J., Karlsson P.E., Selldén G. 2000. An ozone fluxrelationship for wheat. Environmental Pollution 109: 452–462.
  • Pleijel H., Danielsson H., Vandermeiren K., Blum C., Colls J., Öjanperä K. 2002. Stomatal conductance and ozone exposure in relation to potato tuber yield – results from the European CHIP programme. European Journal of Agronomy (in press).
  • Plöchl M., Lyons T., Ollerenshaw J., Barnes J. 2000. Simulating ozone detoxification in the leaf apoplast through the direct reaction with ascorbate. Planta 210: 454–467.
  • Polle A., Otter T., Seifert F. 1994. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.) Plant Physiology 106: 53–60.
  • Polle A. 1998. Photochemical oxidants: uptake and detoxification mechanisms. In: Responses of plant metabolism to air pollution and global change. De Kok L. J., Stulen I. (eds.). Backhuys Publ., Leiden, Netherlands, pp. 95–116.
  • Ranieri A., Castagna A., Padu E., Moldau H., Rahi M., Soldatini G.F. 1999. The decay of O3 through direct reaction with cell wall ascorbate is not sufficient to explain the different degrees of O3 sensitivity in two poplar clones. Journal of Plant Physiology 154: 250–255.
  • Reich P.B. 1987. Quantifying plant response to ozone: a unifying theory. Tree Physiology 3: 63–91.
  • Reiling K., Davison A.W. 1995. Effects of ozone on stomatal conductance and photosynthesis in populations of Plantago major L. New Phytologist 129: 587–594.
  • Runeckles V.C. 1992. Uptake of ozone by vegetation. In: Surface level ozone exposures and their effects on vegetation. Lefohn A.S. (ed.). Lewis Publish., Chelsea, UK, pp. 157–188.
  • Salter L., Hewitt C.N. 1992. Ozone-hydrocarbon interactions in plants. Phytochemistry 31: 4045–4050.
  • Sandermann H. Jr., Wellburn A.R., Heath R.L. 1997. Forest decline and ozone: synopsis. In: Forest Decline and Ozone. Sandermann H., Wellburn A.R., Heath R.L. (eds.). Springer –Verlag Berlin, 1997, pp. 369–377.
  • Schraudner M., Moeder W., Wiese C., Van Camp W., Inzé D., Langebartels C., Sandermann H. 1998. Ozone-induced oxidative burst in the ozone biomonitor plant tobacco Bel W3, The Plant Journal 16: 235–245.
  • Stockwell W.R., Kramm G., Scheel H.-E., Mohnen V.A., Seiler W. 1997. Ozone formation, destruction and exposure in Europe and the United States. In: Forest decline and ozone. Sandermann H., Wellburn A.R., Heath R.L. (eds).Ecological studies No. 127. Springer-Verlag, Berlin, pp. 1–38.
  • Sturgeon B.E., Sipe H.J. Jr., Barr D.P., Corbett J.T., Martinez J.G., Mason R.P. 1998. The fate of oxidising tyrosyl radical in the presence of glutathione and ascorbate. Implications for the radical sink hypothesis. Journal of Biological Chemistry 273: 30116–30121.
  • Smirnoff N. 1996. The function and metabolism of ascorbic acid in plants. Annals of Botany 78: 661–669.
  • Takahama U. 1994. Changes induced by abscisic acid and light in the redoxstate of ascorbate in the apoplast of epicotyls of Vigna angularis. Plant and Cell Physiology 35: 975–978.
  • Takahama U., Oniki T. 1992. Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant and Cell Physiology 33: 379–387.
  • Tingey D.T., Standley C., Field R.W. 1976. Stress ethylene evolution: a measure of ozone effects on plants. Atmospheric Environment 10: 969–974.
  • Turcsányi E., Lyons T., Plöchl M., Barnes J. 2000. Does ascorbate in the mesophyll cell walls form the first line of defence against ozone? Testing the concept using broad bean (Vicia faba L.). Journal of Experimental Botany 51: 901–910.
  • UN-ECE 1996. Critical levels for ozone in Europe: Testing and finalizing the concepts. Kärenlampi L., Skärby L. (eds). UN-ECE workshop report. Univ of Kuopio, Dept. of Ecol. and Environ. Sci., 363 pp.
  • Vanacker H., Harbinson J., Ruisch J., Carver T.L.W., Foyer C.H. 1998. Antioxidant defences of the apoplast. Protoplasma 205: 129–140.
  • Wellburn 1994. Air Pollution and Climate Change. The biological impact. 2nd edition. Longman Scientific and Technical, Essex, 268 pp.
  • Winner E.W., Coleman J.S., Gillespie C., Mooney H.A., Pell E.J.1991. Consequences of evolving resistance to air pollution. In: Ecological genetics and air pollution. Taylor G.E., Pitelka L.F., Clegg M.T. (eds.). Springer Verlag, New York, pp. 177–202.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-4318196c-6752-49b4-b409-6b77b8999172
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.