PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 49 | 1 |

Tytuł artykułu

Genome size variation of Lotus peregrinus at evolution canyon I microsite, Lower Nahal Oren, Mt. Carmel, Israel

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
On the basis of previous studies showing a positive correlation between number of copies of retrotransposons and geographical environment, we hypothesized that different ecogeographical conditions on opposite slopes of Evolution Canyon I could cause intraspecific variation in plant genome size. To test this hypothesis, we chose Lotus peregrinus L. (annual, self-pollinator) as the first candidate because of its biological contrast to the previously studied carob tree (long-lived, cross-pollinator). Absolute nuclear DNA content of 60 genotypes of L. peregrinus was estimated by PI flow cytometry, with tomato (Lycopersicon esculentum cv. Stupicke) as internal reference standard. The mean 2C-value in L. peregrinus was 2.546 pg, ranging from 2.39 pg to 2.71 pg. The mean 2C-value was higher in plants from the south-facing slope (2.549 pg) than from the north-facing slope (2.544 pg), but we were not able to show significant interslope differences in genome size.

Wydawca

-

Rocznik

Tom

49

Numer

1

Opis fizyczny

p.39-46,fig.,ref.

Twórcy

autor
  • Palacky University in Olomouc, Slechtitelu 11, 783 71 Olomouc-Holice, Czech Republic
autor
autor
autor
autor
autor

Bibliografia

  • Anonymous. 1970. Atlas of Israel. Ministry of Labour, Amsterdam, the Netherlands.
  • Arumuganathan K, and Earle ED. 1991. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9: 208-218.
  • Baranyi M, and Greilhuber J. 1995. Flow cytometric analysis of genome size variation in cultivated and wild Pisum sativum (Fabaceae). Plant Systematics and Evolution 194: 231-239.
  • Baranyi M, and Greilhuber J. 1996. Flow cytometric and Feulgen densitometric analysis of genome size variation in Pisum. Theoretical and Applied Genetics 92: 297-307.
  • Bennett MD. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society of London B 181: 109-135.
  • Bennett MD. 1987. Variation in genomic form in plants and its ecological implications. New Phytologist 106 (Suppl. 1): 177-200.
  • Bennett ST, and Bennett MD. 1992. Variation in nuclear DNA amount between wild and cultivated populations of Milium effusum (2n = 28). Genome 35: 1050-1053.
  • Black CL, and Beckmann RL. 1983. The variability of nuclear DNA and its implications for polyploidy in white ash (Fraxinus americanus L. Oleaceae). American Journal of Botany 70: 1420-1423.
  • Boissier E. 1872. Flora Orientalis, Vol. II. Genevae et Basileae and Lugundi.
  • Bureš P. Horová L. and Stoneberg Holt SD. 2002. Nuclear DNA content variation of Eleocharis palustris Agg. in Europe. In Plant Species-Level Systematics: Patterns, Processes and New Applications. Leiden, National Herbarium Nederland: 15.
  • Bureš P, Pavliček T, Horová L and Nevo E. 2004. Microgeographic genome size differentiation of the carob tree, Ceratonia siliqua, at 'Evolution Canyon’, Israel. Annals of Botany 93: 529-535.
  • Caceres M, De Pace C, Scarscia Mugnozza GT, Kotsonis P, Cecarelli M, and Cionini PG. 1998. Genome size variations within Dasypyrum villosum: correlations with chromosomal traits, environmental factors and plant phenotypic characteristics and behaviour in reproduction. Theoretical and Applied Genetics 96: 559-567.
  • Cavalier-Smith T. 2005. Economy, speed and size mater: evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany 95: 147-175.
  • Cavallini A, Natali L, Cionini G, and Gennai, D. 1993. Nuclear DNA variability within Pisum sativum (Leguminosae): nucleotypic effects on plant growth. Heredity 70: 561-565.
  • Chrtková-Žertová A. 1971. The Linnaean material of two species of the genus Lotus in the collection Hortus Cliffortianus. Annalen des Naturhistorischen Museums in Wien 75: 33-37.
  • Cremonini R, Colonna N, Stefani A, Galasso I, and Pignone D. 1994. Nuclear DNA content, chromatin organization and chromosome banding in brown and yellow seeds of Dasypyrum villosum (L.) P. Candargy. Heredity 72: 365-373.
  • Cohen T, Pavliček T, Nevo E, Mester D and Fahima T. 2003. Allozyme and AFLP diversity and divergence of Lotus peregrinus on the contrasting slopes of ‘Evolution Canyon’, Mt. Carmel, Israel. Plant and Animal Genomes XI Conference. 11-15 January 2003, 227. San Diego.
  • Dimitrova D, and Greilhuber J. 2000. Karyotype and DNA-content evolution in ten species of Crepis (Asteraceae) distributed in Bulgaria. Botanical Journal of Linnean Society 132: 281-297.
  • Doležel J, Sgorbati S, and Lucretti S. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85: 625-631.
  • Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L. and Obermayer R. 1998. Plant genome size estimation by flow cytometry: inter-laboratory comparison. Annals of Botany 82 (Suppl. A): 17-26.
  • Doležel J, and Bartoš J. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95: 99-110.
  • Frediani M, Colonna N, Cremonini R, De Pace C, Delre V, Caccia R, and Cionini PG. 1994. Redundancy modulation of nuclear DNA sequences in Dasypyrum villosum. Theoretical and Applied Genetics 88: 167-174.
  • Furuta Y, Nishikawa K and Makino T. 1975. Intraspecific variation in nuclear DNA content in Aegilops squarrosa. Japanese Journal of Genetics 50: 257-263.
  • Graham MJ, Nickell CD, and Rayburn AL. 1994. Relationship between genome size and maturity group in soybean. Theoretical and Applied Genetics 88: 429-432.
  • Greilhuber J. 1998. Intraspecific variation in Genome Size: A critical Reassessment. Annals of Botany 82 (Suppl. A): 27-35.
  • Greilhuber J. 2005. Intraspecific variation in genome size in Angiosperms: Identifying its existence. Annals of Botany 95: 91-98.
  • Greilhuber J, and Ebert I. 1994. Genome size variation in Pisum sativum. Genome 37: 646-655.
  • Greilhuber J, Doležel J, Lysák MA, and Bennett MD. 2005. The origin, evolution and proposed stabilization of the terms 'genome size’ and ‘C-value’ to describe nuclear DNA content. Annals of Botany 95: 255-260.
  • Grime JP. 1983. Prediction of weed and crop response to climate based on measurement of DNA content. Aspects of Applied Biology 4: 87-98.
  • Grime JP, and Mowforth MA. 1982. Variation in genome size - an ecological interpretation. Nature 299: 151-153.
  • Guerra M, and Dos S. 1983. Variaçao no conteúdo de DNA nuclear de Pisum sativum L. Ciencia e Cultura 35: 1661-1663.
  • Heyn CC. 1966. A study of the Lotus peregrinus group. Israel Journal of Botany 13: 37-47.
  • Heyn CC, Madmony A, Alon G, and Werker E. 1995. Regulation of the breeding systems of some selfcompatible Lotus species. Proceedings of the First International Lotus Symposium. University of Missouri Press, Columbia, USA http://www.psu.missouri.edu/lnl/v24/body/lotus_nl.htm
  • Hiremath SC, and Salimath SS. 1991. Quantitative nuclear DNA changes in Eleusine (Gramineae). Plant Systematics and Evolution 178: 225-233.
  • Kalendar R, Tanskanen J, Immonen S, Nevo E, and Schulman AH. 2000. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Sciences, USA 97: 6603-6607.
  • Karcz Y. 1959. The structure of the northern Carmel. Bulletin Research in Country Israel 8G: 119-130.
  • Kenton A. 1984. Chromosome evolution in Gibasis linearis group (Commelinaceae) III. DNA variation, chromosome evolution, and speciation in G. venustula and G. heterophylla. Chromosoma 90: 303-310.
  • Knight CA, Molinari NA, and Petrov DA. 2005. The large genome constraint hypothesis: Evolution, ecology and phenotype. Annals of Botany 95: 177-190.
  • Madmony A. 1991. The mating systems of five species of Lotus (Papilionaceae). M.Sc. Thesis, Department of Botany, The Hebrew University of Jerusalem, Israel.
  • Murray BG. 2005. When does intraspecific C-value variation become taxonomically significant? Annals of Botany 95: 119-125.
  • Nevo E. 1995. Asian, African and European biota meet at ‘Evolution Canyon’ Israel: Local test of global biodiversity and genetic diversity patterns. Proceedings of the Royal Society of London B 262: 149-155.
  • Nevo E. 1997. Evolution in action across phylogeny caused by microclimatic stresses at ‘Evolution Canyon'. Theoretical Population Biology 52: 231-243.
  • Nevo E. 2001. Evolution of genome-phenome diversity under environmental stress. Proceedings of the National Academy of Sciences, USA 98: 6233-6240.
  • Nevo E, Travleev A, Belova NA, Tsatskin A, Pavliček T, Kulik AF, Tsvetkova NN, and Yemshanov DC. 1998. Edaphic interslope and valley bottom divergence at ‘Evolution Canyon’, Lower Nahal Oren, Mount Carmel, Israel. Catena 340: 241-254.
  • Nevo E, Fragman O, Dafini A and Beiles A. 1999. Biodiversity and interslope divergence of vascular plants caused by microclimatic differences at Evolution Canyon’, Lower Nahal Oren, Mount Carmel, Israel. Israel Journal of Plant Science 47: 49-59.
  • Ohri D. 1998. Genome size variation and plant systematics. Annals of Botany 82 (Suppl. A): 75-83.
  • Ohri D. 2005. Climate and growth form: The consequences for genome size in plants. Plant Biology 7: 449-458.
  • Pavliček T, Sharon D, Kravchenko V, Saaroni H, and Nevo E. 2003. Microclimatic interslope differences underlying biodiversity contrasts in ‘Evolution Canyon’. Mt. Carmel, Israel. Journal of Earth Science 52: 1-9.
  • Poggio L, Rosato M, Chiavarino AM, and Naranjo CA. 1998. Genome size and environmental correlation in maize (Zea mays ssp. mays, Poaceae). Annals of Botany 82 (Suppl. A): 107-115.
  • Price HJ. 1988. DNA content variation among higher plants. Annals of the Missouri Botanical Gardens 75: 1248-1257.
  • Price HJ, Chambers KL, and Bachmann K. 1981a. Genome size variation in diploid Microseris bigelovii (Asteraceae). Botanical Gazette 142: 156-159.
  • Price HJ, Chambers KL, and Bachmann K. 1981b. Geographic and ecological distribution of genomic DNA variation in Microseris douglasii (Asteraceae). Botanical Gazette 142: 415-426.
  • Price HJ, Chambers KL, Bachmann K, and Riggs J. 1980. Detection of intraspecific variation in nuclear DNA content in Microseris douglasii. Botanical Gazette 141: 195-198.
  • Price HJ, Chambers KL, Bachmann K, and Riggs J. 1986. Patterns of mean nuclear DNA content in Microseris douglasii (Asteraceae). Botanical Gazette 147: 496-507.
  • Rayburn AL, Biradar DP, Bullock DG, Nelson RL, Gourmet C, and Wetzel JB. 1997. Nuclear DNA content diversity in Chinese soybean introductions. Annals of Botany 80: 321-325.
  • Reeves G, Francis D, Davies MS, Rogers HJ, and Hodkinson TR. 1998. Genome size is negatively correlated with altitude in natural populations of Dactylis glomerata. Annals of Botany 82 (Suppl. A): 99-105.
  • Simpson MG. 2006. Plant Systematics, Elsevier, Amsterdam, the Netherlands.
  • Singh KP, Raina SN, and Singh AK. 1996. Variation In chromosomal DNA associated with the evolution of Arachis species. Genome 39: 890-897.
  • Temsch EM, and Greilhuber J. 2000. Genome size variation in Arachis hypogaea and A. montícola re-evaluated. Genome 43: 449-451.
  • Temsch EM, and Greilhuber J. 2001. Genome size in Arachis duranensis: a critical study. Genome 44: 826-830.
  • Thomas CA. 1971. The genetic organization of chromosomes.
  • Annual Review of Genetics 5: 237-256.
  • Watson EM. 1987. Nuclear DNA content in the Australian Bulbine. Genome 29: 225-234.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-3f603621-3715-462f-8532-412bdd102f8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.