PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 55 | 3 |

Tytuł artykułu

The phanerozoic diversity of agglutinated foraminifera: Origination and extinction rates

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
New diversity curves for agglutinated foraminiferal genera are presented based on the stratigraphic ranges of 764 genera distributed over the 91 Phanerozoic chronostratigraphic subdivisions given in the ICS timescale. The data set for this analysis is based on the stratigraphic ranges of agglutinated genera published in Foraminiferal Genera and their Classification, 218 of which have been modified based upon subsequently published studies and new observations. Additionally, a total of 136 genera have been newly described or reinstated subsequent to the publication of Foraminiferal Genera and their Classification. The revision of stratigraphic ranges is part of the effort by the Grzybowski Foundation’s International Working Group on Foraminiferal Classification to compile a new Catalogue of Agglutinated Foraminiferal Genera. The mean standing diversity of agglutinated foraminiferal genera was compiled by counting the number of boundary crossers rather than the number of genera in each stage. This diversity curve displays a general upward trend throughout the Phanerozoic, punctuated by peaks and troughs of variable magnitude. The curve shows a period of initial radiation from the Early Cambrian to the Early Silurian, followed by a plateau to the Late Permian. The Permian/Triassic and the Triassic/Jurassic boundaries are characterised by small dips in the diversity record. The Jurassic begins with an exponential rise in mean standing diversity that continues to the Cenomanian. The Cenomanian to Holocene record of mean standing diversity is characterised by four peaks and troughs that are roughly in line with the cycles of global climate, with reductions in diversity in the end−Cenomanian, end−Cretaceous, and end−Miocene. Excluding modern values, the Phanerozoic maximum in the number of genera with a fossil record is observed in the Cenomanian, whereas the maximum Phanerozoic mean standing diversity is observed in the Langhian stage of the Miocene. The highest per−capita origination rates are observed in the Hettangian, Dapingian, Pleistocene, and Sheinwoodian (mid−Silurian). Linear regression analysis of the origination rates reveals a decrease towards the Holocene, in agreement with findings of Raup and Sepkoski. The highest per−capita extinction rates are observed in the Messinian, late Silurian (Gorstian), Hirnantian (latest Ordovician), and Maastrichtian. The background extinction rate shows an increasing trend towards the Recent, which is in disagreement with the findings of Raup and Sepkoski. We attribute this apparent discrepancy to the Late Cretaceous to Palaeogene extinctions of shallower−water larger agglutinates and the pull of the end−Miocene extinction event.

Wydawca

-

Rocznik

Tom

55

Numer

3

Opis fizyczny

p.529-539,fig.,ref.

Twórcy

autor
  • University College London, Gower Street, London WC1E 6BT, U.K.
autor
autor

Bibliografia

  • Bell, K.N. 1996. Early Devonian (Emsian) agglutinated foraminiferans from Buchan and Bindi, Victoria, Australia. Proceedings of the Royal Society of Victoria 108: 73–106.
  • Bell, K.N., Cockle, P., and Mawson, R. 2000. Agglutinated foraminifera (Silurian and Early Devonian) from Borenore and Windellama, New South Wales. Records of the Western Australian Museum 58 (Supplement): 1–20.
  • Bou Dagher−Fadel, M. 2008. Evolution and geological significance of larger benthic foraminifera. Developments in Palaeontology and Stratigraphy 21: 1–540.
  • Bown, P.R., Lee, J.A., and Young, J.R. 2004. Calcareous nannoplankton evolution and diversity. In: H. Thierstein and J.R. Young (eds.), Coccolithophores—from Molecular Processes to Global Impact, 481–508. Springer−Verlag, New York.
  • Coccioni, R., Galeotti, S., and Gravili, M. 1995. Latest Albian–earliest Turonian deep−water agglutinated foraminifera in the Bottaccione section (Gubbio, Italy). Biostratigraphic and palaeoecologic implications. Revista Española de Paleontologia, No. Homenaje al Dr. Guillermo Colom: 135–152.
  • Culver, S.J. 1991. Early Cambrian foraminifera from West Africa. Science 254: 689–691. http://dx.doi.org/10.1126/science.254.5032.689
  • Decrouez, D. 1989. Generic ranges of Foraminiferida. Revue de Paleobiologie 8 (1): 263–321.
  • Foote, M. 2000. Origination and Extinction components of taxonomic diversity: general problems. Paleobiology 26: 74–102. http://dx.doi.org/10.1666/0094−8373(2000)26%5B74:OAECOT%5D2.0.CO;2
  • Fugagnoli, A. 2004. Trophic regimes of benthic foraminiferal assemblages in Lower Jurassic shallow water carbonates from northeastern Italy (Calcari Grigi, Trento Platform, Venetian Prealps). Palaeogeography, Palaeoclimatology, Palaeoecology 205: 111–130. http://dx.doi.org/10.1016/j.palaeo.2003.12.004
  • Gaucher, C. and Sprechmann, P. 1999. Upper Vendian skeletal fauna of the Arroyo de Soldado Group, Uruguay. Beringeria 23: 55–91.
  • Gilinsky, N.L. and Bambach, R.K. 1987. Asymmetrical patterns of origination and extinction in higher taxa. Paleobiology 13: 427–445.
  • Groves, J.R. and Lee, A. 2008. Accelerated rates of foraminiferal origination and extinction during the Late Paleozoic ice age. Journal of Foraminiferal Research 38: 74–84. http://dx.doi.org/10.2113/gsjfr.38.1.74
  • Ogg, J.G., Ogg, G., and Gradstein, F.M. 2008. The Concise Geologic Time Scale. 184 pp. Cambridge University Press, Cambridge.
  • Kaiho, K. and Hasegawa, T. 1994. End−Cenomanian benthic foraminiferal extinctions and oceanic dysoxic events in the northern Pacific Ocean. Paleogeography Paleoclimatology Paleoecology 111: 29–43. http://dx.doi.org/10.1016/0031-0182(94)90346-8
  • Kaminski, M.A. 2004. The Year 2000 classification of agglutinated foraminifera. In: M. Bubik and M.A. Kaminski (eds.), Proceedings of the sixth international workshop on agglutinated foraminifera. Grzybowski Foundation Special Publication 8: 237–255.
  • Kaminski, M.A., Setoyama, E., and Cetean, C.G. 2008a. Revised Stratigraphic Ranges and the Phanerozoic Diversity of Agglutinated Foraminiferal Genera. In: M.A. Kaminski and R. Coccioni (eds.), Proceedings of the seventh international workshop on agglutinated foraminifera. Grzybowski Foundation Special Publication 13: 79–106.
  • Kaminski, M.A., Henderson, A.S., Cetean, C.G., and Waskowska−Oliwa, A. 2008b. The Ammolagenidae, a new family of agglutinated foraminifera. In: A. Pisera, M.A. Bitner, and A.T. Halamski (eds.), Ninth Paleontological Conference, Warszawa, 10–11 October 2008, Abstracts, 41–42. Polish Academy of Sciences, Institute of Paleobiology, Warsaw.
  • Kender, S., Kaminski, M.A., and Jones, R.W. 2008. Early to Middle Miocene Foraminifera from the deep−sea Congo Fan, offshore Angola. Micropaleontology 55: 477–568.
  • Kuhnt, W. 1992. Abyssal recolonization by benthic foraminifera after the Cenomanian–Turonian boundary anoxic event in the North Atlantic. Marine Micropaleontology 19: 257–274. http://dx.doi.org/10.1016/0377-8398(92)90032-F
  • Loeblich, A.R. and Tappan, H. 1987. Foraminiferal Genera and their Classification. 970 pp + 847 pl. Van Nostrand Reinhold, New York.
  • McIlroy, D., Green, O.R., and Brasier, M.D. 2001. Paleobiology and evolution of the earliest agglutinated foraminifera: Platysolenites, Spirosolenites and related forms. Lethaia 34: 13–29. http://dx.doi.org/10.1080/002411601300068170
  • Miller, K.G. Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S. Christie−Blick, N., and Pekar, S.F. 2005. The Phanerozoic record of global sea level change. Science 310: 1293–1298. http://dx.doi.org/10.1126/science.1116412
  • Raup, D.M. and Sepkoski, J.J. 1982. Mass Extinctions in the Marine Fossil Record. Science 215: 1501–1503. http://dx.doi.org/10.1126/science.215.4539.1501
  • Schlanger, S.O. and Jenkins, H.C. 1976. Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw 55: 179–184.
  • Schönfeld, J. 1996. The “Stilostomella Extinction”. Structure and dynamics of the last turnover in deep−sea benthic foraminiferal assemblages. In: A. Moguilevsky and R. Whatley (eds.), Microfossils and Oceanic Environments, 27–39. University of Wales, Aberystwyth Press, Aberystwyth.
  • Septfontaine, M. 1988. Towards an evolutionary classification of Jurassic lituolids (Foraminifera) in carbonate platform environment. Revue de Paleobiologie Special Volume 2: 229–256.
  • Sepkoski, J.J. 1984. A kinetic model of Phanerozoic taxonomic diversity. III Post Paleozoic families and mass extinctions.Paleobiology 10: 246–267.
  • Sepkoski, J.J. 2002. A compendium of fossil marine genera. Bulletins of American Paleontology 363: 1–560.
  • Skelton, P.W. 2002. Changing climate and biota—the marine record. In: P.W. Skelton (ed.), The Cretaceous World. Cambridge University Press, Cambridge.
  • Smith, A.B. 2003. Getting the measure of diversity. Paleobiology 29: 34–36. http://dx.doi.org/10.1666/0094-8373(2003)029%3C0034:GTMOD%3E2.0.CO;2
  • Smith, A.B. and McGowan, A.J. 2007. The shape of the Phanerozoic marine palaeodiversity curve: how much can be predicted from the sedimentaty rock record of Western Europe? Palaeontology 50: 765–774. http://dx.doi.org/10.1111/j.1475-4983.2007.00693.x
  • Stanley, S.M. 2007. An analysis of the history of marine animal diversity. Paleobiology Memoirs 4: 1–55. http://dx.doi.org/10.1666/06020.1
  • Stanley, S.M. and Powell, M.G. 2003. Depressed rates of origination and extinction during the late Paleozoic ice age: a new state for the global marine ecosystem. Geology 31: 877–880. http://dx.doi.org/10.1130/G19654R.1
  • Stanley, S.M. and Yang, X. 1994. A double mass extinction event at the end of the Paleozoic Era. Science 266: 1340–1344. http://dx.doi.org/10.1126/science.266.5189.1340
  • Tappan, H. and Loeblich, A.R. 1988. Foraminiferal evolution, diversification, and extinction. Journal of Paleontology 62: 695–714.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-3d4b93ec-ea7b-48d9-bdf9-caeb799ba07b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.