PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 47 | 4 |

Tytuł artykułu

The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
1Department of Immunology, University of Strathclyde, Strathclyde Institute for Biomedical Science, 27 Taylor Street, Glasgow G4 0NR, U.K.; 2Institute of Molecular Biology, Biochemistry and Microbiology, University of Graz, Schubertstrasse 1, 8010 Graz, Austria; 3Research Institute of Physico-Chemical Medicine, M. Pirogovskaya 1a, 119828 Moscow, Russia; 4Institute of Medical Physics and Biophysics, University of Leipzig, Liebigstrasse 27, 04103 Leipzig, Germany; 5Department of Pure & Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.; 6Institute of Medical Biochemistry, Jagiellonian University, M. Kopernika 7, 31-034 Krakow, Poland Key words: low density lipoprotein, hypochlorous acid, lipids, lipid peroxidation, lipid chlorohydrins, unsaturated fatty acids Myeloperoxidase (MPO), an abundant enzyme in phagocytes, has been implicated in the pathogenesis of various inflammatory diseases including atherosclerosis. The major oxidant produced by MPO, hypochlorous acid (HOCl), is able to modify a great variety of biomolecules by chlorination and/or oxidation. In this paper the reactions of lipids (preferentially unsaturated fatty acids and cholesterol) with either reagent HOCl or HOCl generated by the MPO-hydrogen peroxide-chloride system are reviewed. One of the major issues has been whether the reaction of HOCl with lipids of low density lipoprotein (LDL) yields predominantly chlorohydrins or lipid hydroperoxides. Electrospray mass spectrometry provided direct evidence that chlorohydrins rather than peroxides are the major products of HOCl- or MPO-treated LDL phosphatidylcholines. Nevertheless lipid peroxidation is a possible alternative reaction of HOCl with polyunsaturated fatty acids if an additional radical source such as pre-formed lipid hydroperoxides is available. In phospholipids carrying a primary amino group such as phosphatidylethanolamine chloramines are the preferred products compared to chlorohydrins. Cholesterol can be converted by HOCl to great variety of oxysterols besides three isomers of chlorohydrins. For the situation in vivo it appears that the type of reaction occurring between HOCl and lipids would very much depend on the circumstances, e.g. the pH and the presence of radical initiators. The biological effects of lipid chlorohydrins are not yet well understood. It has been shown that chlorohydrins of both unsaturated fatty acids as well as of cholesterol may cause lysis of target cells, possibly by disruption of membrane structures.

Wydawca

-

Rocznik

Tom

47

Numer

4

Opis fizyczny

p.889-899,fig.,ref.

Twórcy

  • University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, U.K.
autor
autor
autor
autor

Bibliografia

  • 1. Stossel, T.P., Mason, R.J. & Smith, A.L. (1974) Lipid peroxidation by human blood phagocytes. J. Clin. Invest. 54, 638-645.
  • 2. Claster, S., Chiu, D.T., Quintanilha, A. & Lubin, B. (1984) Neutrophils mediate lipid peroxidation in human red cells. Blood 64, 1079-1084.
  • 3. Carlin, G. & Djursaeter, R. (1988) Pero­xidation of phospholipids promoted by myelo­peroxidase. Free Radical Res. Commun. 4, 251-257.
  • 4. Thomas, M.J., Shirley, P.S., Hedrick, C.C. & DeChatelet, L.R. (1986) Role of free radical processes in stimulated human polymor­phonuclear leukocytes. Biochemistry 25, 8042-8048.
  • 5. Cathcart, M.K., Morel, D.W. & Chisolm, G.M. 3d (1985) Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J. Leukoc. Biol. 38, 341-350.
  • 6. Wieland, E., Brandes, A., Armstrong, V.W. & Oellerich, M. (1993) Oxidative modification of low density lipoproteins by human poly­morphonuclear leukocytes. Eur. J. Clin. Chem. Clin. Biochem. 31, 725-731.
  • 7. Schaur, R.J., Dussing, G., Kink, E., Schauen­stein, E., Posch, W., Kukovetz, E. & Egger, G. (1994) The lipid peroxidation product 4-hydroxynonenal is formed by — and is able to attract — rat neutrophils in vivo. Free Radical Res. 20, 365-373.
  • 8. Daugherty, A., Rateri, D.L., Dunn, J.L. & Heinecke, J.W. (1994) Myeloperoxidase, a cat­alyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest. 94, 437-444.
  • 9. Heinecke, J.W. (1997) Mechanism of oxidative damage of low density lipoprotein in human atherosclerosis. Curr. Opin. Lipidol. 8, 268­274.
  • 10. Hazell, L.J., Arnold, L., Flowers, D., Waeg, G., Malle, E. & Stocker, R. (1996) Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J. Clin. Invest. 97, 1535-1544.
  • 11. Harrison, J.E. & Schultz, J. (1976) Studies on the chlorinating activity of myeloperoxidase. J. Biol. Chem. 251, 1371-1374.
  • 12. Jerlich, A., Fabjan, J.S., Tschabuschnig, S., Smirnova, A.V., Horakova, L., Hayn, M., Auer, H., Guttenberger, H., Leis, H.-J., Tatzber, F., Waeg, G. & Schaur, R.J. (1998) Human low density lipoprotein as a target of hypochlorite generated by myeloperoxidase. Free Radical Biol. Med. 24, 1139-1148.
  • 13. Arnhold, J., Wiegel, D., Richter, O., Ham­merschmidt, S., Arnold, K. & Krumbiegel, M. (1991) Modification of low density lipo- proteins by sodium hypochlorite. Biomed. Biochim. Acta 50, 967-973.
  • 14. Hazell, L.J. & Stocker, R. (1993) Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages. Biochem. J. 290, 165-172.
  • 15. Witztum, J.L. & Steinberg, D. (1991) Role of oxidized low density lipoprotein in athero- genesis. J. Clin. Invest. 88, 1785-1792.
  • 16. Berliner, J.A. & Heinecke, J.W. (1996) The role of oxidized lipoproteins in atherogenesis. Free Radical Biol. Med. 20, 707-727.
  • 17. van den Berg, J.J. & Winterbourn, C.C. (1994) Measurement of reaction products from hypochlorous acid and unsaturated lipids. Methods Enzymol. 233, 639-649.
  • 18. Hazen, S.L., Hsu, F.F., Gaut, J.P., Crowley, J.R. & Heinecke, J.W. (1999) Modification of proteins and lipids by myeloperoxidase. Methods Enzymol. 300B, 88-105.
  • 19. Stelmaszynska, T., Kukovetz, E., Egger, G. & Schaur, R.J. (1992) Possible involvement of myeloperoxidase in lipid peroxidation. Int. J. Biochem. 24, 121-128.
  • 20. Panasenko, O.M. (1997) The mechanism of the hypochlorite-induced lipid peroxidation. Bio- factors 6, 181-190.
  • 21. Panasenko, O.M., Evgina, S.A., Aidyraliev, R.K., Sergienko, V.I. & Vladimirov, Y.A. (1994) Peroxidation of human blood lipo- proteins induced by exogenous hypochlorite generated in the system of myeloperoxi- dase+H2O2+Cl". Free Radical Biol. Med. 16, 143-148.
  • 22. Panasenko, M.O., Evgina, S.A., Driomina, E.S., Sharov, V.S., Sergienko, V.I. & Vla- dimirov, Y.A. (1995) Hypochlorite induces lipid peroxidation in blood lipoproteins and phospholipid liposomes. Free Radical Biol. Med. 19, 133-140.
  • 23. Panasenko, O.M., Arnhold, J., Schiller, J., Arnhold, K. & Sergienko, V.I. (1994) Pero- xidation of egg yolk phosphatidylcholine lipo­somes by hypochlorous acid. Biochim. Biophys. Acta 1215, 259-266.
  • 24. Panasenko, O.M. & Arnhold, J. (1996) Mecha­nisms of hypochlorite-induced peroxidation on phospholipid liposomes. Membr. Cell Biol. 10, 93-104.
  • 25. Panasenko, O.M., Arnhold, J. & Sergienko, V.I. (1998) The effect of pH on hypochlo- rite-induced peroxidation of phospholipid lipo­somes. Biofizika 43, 463-469.
  • 26. Jerlich, A., Fritz, G., Kharrazi, H., Hammel, M., Tschabuschnig, S., Glatter, O. & Schaur, R.J. (2000) Comparison of HOCl traps with myeloperoxidase inhibitors in prevention of low density lipoprotein oxidation. Biochim. Biophys. Acta 1481, 109-118.
  • 27. Hazell, J.L., van den Berg, J.J. & Stocker, R. (1994) Oxidation of low density lipoprotein by hypochlorite causes aggregation that is medi­ated by modification of lysine residues rather than lipid oxidation. Biochem. J. 302, 297-304.
  • 28. Hazell, L.J., Davies, M.J. & Stocker, R. (1999) Secondary radicals derived from chloramines of apolipoprotein B-100 contribute to HOCl-in- duced lipid-peroxidation of low density lipo- protein. Biochem. J. 339, 489-495.
  • 29. Winterbourn, C.C., van den Berg, J.J., Roit- man, E. & Kuypers, F.A. (1992) Chlorohydrin formation from unsaturated fatty acids re­acted with hypochlorous acid. Arch. Biochem. Biophys. 296, 547-555.
  • 30. Heinecke, J.W., Li, W., Mueller, D.M., Bohrer, A. & Turk, J. (1994) Cholesterol chlorohydrin synthesis by the myeloperoxidase-hydrogen peroxide-chloride system: Potential markers for lipoproteins oxidatively damaged by pha­gocytes. Biochemistry 33, 10127-10136.
  • 31. Arnhold, J., Panasenko, O.M., Schiller, J., Vladimirov, Y.A. & Arnold, K. (1995) The ac­tion of hypochlorous acid on phosphatidyl­choline liposomes in dependence on the con­tent of double bonds. Stoichiometry and NMR analysis. Chem. Phys. Lipids 78, 55-64.
  • 32. van den Berg, J.J., Winterbourn, C.C. & Kuypers, F.A. (1993) Hypochlorous acid-medi­ated modification of cholesterol and phos­pholipid: Analysis of reaction products by gas chromatography-mass spectrometry. J. Lipid Res. 34, 2005-2012.
  • 33. Carr, A.C., van den Berg, J.J. & Winterbourn, C.C. (1996) Chlorination of cholesterol in cell membranes by hypochlorous acid. Arch. Biochem. Biophys. 332, 63-69.
  • 34. Carr, A.C., Winterbourn, C.C., Blunt, J.W., Phillips, A.J. & Abell, A.D. (1997) Nuclear magnetic resonance characterization of 6 a-chloro-5 y3-cholestane-3 y3,5 diol formed from the reaction of hypochlorous acid with choles­terol. Lipids 32, 363-367.
  • 35. Hazen, S.L., Hsu, F.F., Duffin, K. & Heinecke, J.W. (1996) Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chlo­ride system of phagocytes converts low den­sity lipoprotein cholesterol into a family of chlorinated sterols. J. Biol. Chem. 271, 23080-23088.
  • 36. Jerlich, A., Pitt, A.R., Schaur, R.J. & Spickett, C.M. (2000) Pathways of phospholipid oxida­tion by HOCl in human LDL detected by LC-MS. Free Radical Biol. Med. 28, 673-682.
  • 37. Panasenko, O.M. & Arnhold, J. (1999) Linoleic acid hydroperoxide favours hypochlorite- and myeloperoxidase-induced lipid peroxidation. Free Radical Res. 30, 479-487.
  • 38. Arnhold, J., Panasenko, O.M., Schiller, J., Ar­nold, K., Vladimirov, Y.A. & Sergienko, V.I. (1996) Reaction of hypochlorous acid with hy­drogen peroxide and tert-butyl hydroperoxide. 1H NMR spectroscopy and chemilumines- cence analyses. Z. Naturforsch. 51c, 386-394.
  • 39. Panasenko, O.M., Arnhold, J. & Schiller, J. (1997) Hypochlorite reacts with an organic hydroperoxide forming free radicals, but not singlet oxygen, and thus initiates lipid pero­xidation. Biochemistry (Moscow) 62, 951-959.
  • 40. Savenkova, M.I., Mueller, D.M. & Heinecke, J.W. (1994) Tyrosyl radical generated by myeloperoxidase is a physiological catalyst for the initiation of lipid peroxidation in low den­sity lipoprotein. J. Biol. Chem. 269, 20394­20400.
  • 41. Heinecke, J.W., Li, W., Daehnke, H.L. & Goldstein, J.A. (1993) Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J. Biol. Chem. 268, 4069-4077.
  • 42. Heinecke, J.W., Li, W., Francis, G.A. & Goldstein, J.A. (1993) Tyrosyl radical gener­ated by myeloperoxidase catalyzes the oxida- tive cross-linking of proteins. J. Clin. Invest. 91, 2866-2872.
  • 43. Hawkins, C.L. & Davies, M.J. (1998) Hypo- chlorite-induced oxidation of plasma proteins: Formation of nitrogen-centred radicals and their role in protein fragmentation. Curr. Top. Biophys. 22, 89-98.
  • 44. Momynaliev, K.T., Osipova, S.V., Sadovskaya, V.L., Govorun, V.M. & Sergienko, V.I. (1997) Products of the reaction of cholesterol with hypochlorite anion. Biochemistry (Moscow) 62, 158-164.
  • 45. Carr, A.C., van den Berg, J.J. & Winterbourn, C.C. (1998) Differential reactivities of hypo­chlorous and hypobromous acids with purified Escherichia coli phospholipid — formation of haloamines and halohydrins. Biochim. Bio­phys. Acta 1392, 254-264.
  • 46. Vissers, M.C., Stern, A., Kuypers, F., van den Berg, J.J. & Winterbourn, C.C. (1994). Mem­brane changes associated with lysis of red blood cells by hypochlorous acid. Free Radical Biol. Med. 16, 703-712.
  • 47. Vissers, M.C.M., Carr, A.C. & Chapman, A.L.P. (1998) Comparison of human red-cell lysis by hypochlorous and hypobromous acids — insights into the mechanisms of lysis. Bio- chem. J. 330, 131-138.
  • 48. Carr, A.C., Vissers, M.C., Domigan, N.M. & Winterbourn, C.C. (1997) Modification of red cell membrane lipids by hypochlorous acid and haemolysis by preformed lipid chloro- hydrins. Redox Rep. 3, 263-271.
  • 49. Drobnies, A.E., Venczel, A.E. & Cornell, R.B. (1998) Activation of CTP-phosphocholine cyti- dyltransferase by hypochlorite-oxidized phos- phatidylcholines. Biochim. Biophys. Acta 1393, 90-98.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-3c6e757e-8493-4fee-8791-f10fadd19c41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.