PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 58 | 2 |

Tytuł artykułu

Application of response surface methodology in medium optimization for protease production by the new strain of Serratia marcescens SB08

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
For production of protease by a new strain, Serratia marcescens SB08, optimization of the fermentation medium and environmental conditions, were carried out by applying factorial design and response surface methodology. The results of factorial design showed that pH, agitation, incubation time and yeast extract were the key factors affecting protease production. The optimal cultural conditions for protease production obtained with response surface methodology were pH 6.0, agitation 100 rpm, incubation time 51.0 h and yeast extract 3.0 g/l. This model was also validated by repeating the experiments under the optimized conditions, which resulted in the maximum protease production of 281.23 U/ml (Predicted response 275.66 U/ml), thus proving the validity of the model. Unexplored Serratia marcescens SB08 strain isolated from enteric gut of sulphur butterfly (Kricogonia lyside) was taken up for this study. This study demonstrates the ability of the new strain, Serratia marcescens SB08, for protease production and also that smaller and less time consuming statistical experimental designs are adequate for the optimization of fermentation processes for maximum protease production.

Wydawca

-

Rocznik

Tom

58

Numer

2

Opis fizyczny

p.117-124,fig.,ref.

Twórcy

autor
  • 13/262 MGR Nagar, Podanur, Coimbatore - 641 023, Tamil Nadu, India

Bibliografia

  • Abdel-Fattah Y.R., H.M. Saeed, Y.M. Gohar and M.A. El-Baz. 2005. Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Process Biochem. 40: 1707-1714.
  • Ahuja S.K., G.M. Ferreira and A.R. Morreira. 2004. Application of Plackett and Burman design and response surface methodology to achieve exponential growth of aggregated shipworm bacterium. Biotechnol. Bioeng. 85: 666-675.
  • Anisworth S.J. 1994. Soap and detergents. Chem. Eng. News, 72: 34-59.
  • Antranikian G., C. Herzberg and G. Gottschalk. 1987. Production of thermostable a-amylases, pullulanase and α-glucosidase in continuous culture by a new Clostridium isolate. Appl. Environ. Microbiol. 53: 1668-1673.
  • Banerjee U.C., R.K. Sani, W. Azmi and R. Soni. 1999. Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem. 35(1): 213-219.
  • Bauer M., L. Driskil, W. Callen, M. Snead, E. Mathur and R. Kelley. 1999. An endoglucanase EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes a-1,4 bonds in mixed linkage (1-3),(1-4)-βD-glucans and cellulose. J. Bacteriol. 18: 284-290.
  • Bharat B. and G. Hoondal. 1998. Isolation, purification and properties of thermostable chitinase from an alkalophilic Bacillus sp. BG-11. Biotechnol. Lett. 20: 157-159.
  • Box G.E.P. and J.S. Hunter. 1957. Multi-factor experimental designs for exploring response surfaces. Ann. Math. Stat. 28: 195-241.
  • Box G.E.P. and K.B. Wilson. 1951. On the experimetal designs for exploring response surfaces. Ann. Math. Stat. 13: 1-45.
  • Burrows W. 1973. Textbook of Microbiology. W.B. Saunders Company, Ontario.
  • Chauhan B. and R. Gupta. 2004. Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Process Biochem. 39: 2115-2122.
  • Cruegar W. and A. Cruegar. 1984. Biotechnology- A Textbook for Industrial Microbiology. Madison, W1: Science Tech Inc.
  • Demirijan D., F. Moris-Varas and C. Cassidy. 2001. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5: 144-151.
  • Dey G., A. Mitra, R. Banerjee and B.R. Maiti. 2001. Enhanced production of amylase by optimization of nutritional constituents using response surface methodology. Biochem. Eng. J. 7: 227-231.
  • Elibol M. 2004. Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochem. 39: 1057-1062.
  • Francis F., A. Sabu, K.M. Nampoothiri, G. Szakaes and A. Pandey. 2002. Synthesis of a-amylase by Aspergillus orvzae in solid-state fermentation. J. Basic Microbiol. 42: 320-326.
  • Frankena J., G.M. Koningstein, H.W. Vin Verseveld and A.H. Stouthamer. 1986. Effect of different limitations in chemostat cultures on growth and production of exocellular protease by Bacillus licheniformis. Appl. Microbiol. Biotechnol. 24: 106-112.
  • Ghaly A.E., M. Kamal and L.R. Correia. 2005. Kinetic modeling of continuous submerged fermentation of cheese whey for single cell protein production. Bioresour. Teehnol. 96: 1143-1152.
  • Giesecke U.E., G. Bierbaum, H. Rudde, U. Spohn and C. Wandrey. 1991. Production of alkaline protease with Bacillus licheniformis in a controlled fed-batch process. Appl. Microbiol. Biotechnol. 35: 720-724.
  • Gokhade D.V., S.G. Patil and K.B. Bastawde. 1991. Optimization of cellulase production by Aspergillus niger NCIM 1207. Appl. Biochem. Biotechnol. 30: 99-109.
  • Groboillot A. 1994. Immobilization of cells for application in the food industry. Crit. Rev. Biotechnol. 14: 75-107.
  • Inhs D.A., W. Schmidt and F.R. Richter. 1999. Proteolytic enzyme cleaner, US Patent Number, 5961366.
  • Kohilu U., P. Nigam, D. Singh and K. Chaudhary. 2001. Thermostable, alkaliphilic and cellulose free xylanases production by Thermoactinomyces thalophilus subgroups C. Enzyme Microb. Technol. 28: 606-610.
  • Kole M.M., J. Draper and D.F. Gerson. 1988. Production of protease by Bacillus subtilis using simultaneous control of glucose and ammonium concentrations. J. Chem. Technol. Biotechnol. 41: 197-206.
  • Kunamneni A., K.S. Kumar and S. Singh. 2005. Response surface methodological approach to optimize the nutritional parameters for enhanced production of a-amylase. African . J. Biotechnol. 4: 708-716.
  • Kunitz M. 1947. Crystalline soybean Trypsin Inhibitor, II. General properties. J. Gen. Physiol. 30: 291-310.
  • Masse F.W. J. L. and R.V. Tilburg. 1983. The benefit of detergent enzymes under changing washing conditions. J.Am. Oil Chem. Soc. 60: 1672-1675.
  • Outtrup H., C. Dambmann, M. Christiansen and D.A. Aaslyng. 1995. Bacillus sp. JP 395, method of making and detergent composition. US Patent Number 5466594.
  • Plackett R.L. and J.P. Burman. 1946. The design of optimum multifactorial experiments. Biometrika 33: 305-325.
  • Ramesh M.V. and B.K. Lonsane. 1987. A novel bacterial thermostable α-amylase system produced under solid-state fermentation. Biotechnol. Lett. 9: 501-504.
  • Rao J.M., C. Kim and S. Rhee. 2000. Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology. Process Biochem. 35: 639-647.
  • Uma Mahcshwar Rao J.L. and T. Satyanarayana. 2003. Statistical optimization of a high maltose forming, hyperthermostable and Ca⁺² independent alpha amylase production by an extreme thermophilic Geohacillus thermoleovorans using response surface methodology. J. Appl. Microbiol. 95: 712-718.
  • Wenster-Botz D. 2000. Experimental design for fermentation media development: Statistical design or global random search. J. Biosci. Bioeng. 90 (5): 473-483.
  • Wolff A.M, M.S. Showell, M.G. Venegas, B.L. Barnett and W.C. Wertz. 1993. Laundry Performance of Suhtilisin Proteases, Bolt R, Betzel C (eds), Suhtilisin Enzymes: Practical Protein Engineering. New York: Plenum Press, pp 113-120.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-395fefbb-c8c1-4010-bf58-aa59c148ed26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.