PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 49 | 1 |

Tytuł artykułu

Nieprzyjazne pasozytom a przyjazne srodowisku trangeniczne bioinsektycydy

Treść / Zawartość

Warianty tytułu

Języki publikacji

PL

Abstrakty

EN
Transgenic bioinsecticides inimical to parasites, but imical to environment. Identification of Bacillus thuringiensis (Bt) parasporal crystalline inclusions composed of Cry proteins (=delta-endotoxins) resulted in introduction of microbial pesticides for biological control of some parasites. Delta-endotoxins are encoded by cry genes and are active against pest and nuisance insects (mostly mosquitoes and black flies - vectors of still important infectious diseases). The recent significant progress in DNA recombination technique may overcome limitations (a short residual persistence and a narrow spectrum of activity) associated with application of Bt conventional products. An introduction of cry genes from mosquitocidal subspecies B. th. israelensis (Bti) to the aquatic microorganisms inhabiting the same water bodies as mosquito and fly larvae (Diptera), has considerably improved the toxin delivery system to target insects. However, in the first experiments, in which Bti genes were cloned in cyanobacteria (Agmenellum quadruplicatum, Synechocystis PCC6803), a low gene expression was observed. Thus, it was necessary to integrate cry genes with strong promoters or to increase the number of vector-introduced copies. To overcome the obstacles of low gene expression and regulatory restriction for 1ecombinant organisms, Bti spore/crystal formulations were encapsulated in the aquatic protozoan, Tetrahymena pyriformis. Large numbers of crystals (180 to 240/cell) were accumulated in its food vacuoles. This system resulted also in an increase in toxin persistence from 24 to 71 h. Cloning Bti genes in B. sphaericus (which also produces mosquitocidal proteins) was another way of an increasing Bt crystal residual activity. In this case, the crystals were additionally protected by B. sphaericus exosporium. These transgenic bacteria produced large amounts of delta-endotoxins that remained under water surface longer than the wild B. sphaericus strains. Moreover, they had a broader spectrum of insecticidal activity, because B. Sphaericus is toxic mostly to Culex and Anopheles, and Bti - mostly to Culex, Aedes and some Simmulidae. Gram-negative bacteria (Asticcacaulis excentricus, Caulobacter crescentus and Ancylobacter aquaticus) turned out also to be effective delta-endotoxin producers. They grow on simple media and do not contain proteases which could degrade Cry proteins. In some cases, 100% mosquito larvae mortality was observed as a result of an exposure to transgenic microorganisms containing Bti genes. However, transgenic techniques are still not very popular in the world, despite their efficacy in biological control of insects. The transgenic organism construction is expensive and time-consuming. Genetic engineeling is still raising a lot of anxieties and doubts concerning inappropriate use of modified organisms. On the other hand, this technology could solve many problems associated with vectors of important diseases, which are still unapproachable to contemporary medicine.

Wydawca

-

Rocznik

Tom

49

Numer

1

Opis fizyczny

s.11-20,bibliogr.

Twórcy

autor
  • Uniwersytet Wroclawski, ul.Przybyszewskiego 63/77, 51-148 Wroclaw
autor
autor

Bibliografia

  • Angsuthansombat C., Panyim S. 1989. Biosynthesis of 130-kilodalton mosquito larvicide in the cyanobacterium Agmenellum quadruplicatum PR-6. Applied and Environmental Microbiology 55: 2428-2430.
  • Becker N., Margalit J. 1993. Use of Bacillus thuringiensis israelensis against mosquitoes and blackflies. In: ,,Bacillus thuringiensis, An. Environmental Biopesticide: Theory and Practice'' (Eds. P.E. Enwistle, J.S. Cory, M.J. Bailey, S. Higgs). John Wiley & Sons, Chichester, New York, 147-170.
  • Beegle C.C., Yamamoto T. Y. 1992. History of Bacillus thuringiensis Berliner research and development. Canadian Entomologist 124: 587-616.
  • Charles J .-F., De Barjac H. l 982. Sporulation et cristallogenese de Bacillus thuringiensis var. israelensis en microscopie electronique. Annual Microbiology 133 A: 425-442.
  • Chungjatupornchai W. 1990. Expression of the mosquitocidal protein genes of Bacillus thuringiensis subsp. israelensis and the herbicide resistance gene bar in Synechocystis PCC6803. Current Microbiology 21: 283-288.
  • Copping L.G., Menn J.J. 2000. Biopesticides: a review of their action, applications efficacy. Pest Management Science. West Sussex, UK: Wiley, 56: 651-676.
  • Crickmore N., Zeigler D.R., Feitelson J. Schnepf E., Van Rie J., Lereclus D., Baum J., Dean D.H. 1998. Revision of the Nomenclature for the Bacillus thuringiensis Pesticidal Crystal Proteins. Microbiolology and Molecular Biology Reviews 62: 807-821.
  • De Maagd R.A., Bravo A., Crickmore N. 2001. How Bacillus thuringiensis has envolved specfic toxins to colonize the insect world. Trends in Genetics 17: 193-199.
  • Doroszkiewicz W., Lonc E. 1999. Biodiversity of Bacillus thuringiensis strains in the phylloplane and soil of Lower Silesia Region (Poland). Acta Microbiologica Polonica 48: 355-361.
  • Gamel P.H., Piot J.C. 1992. Characterization and properties of a novel plasmid vector for Bacillus thuringiensis displaying compatibility with host plasmids. Gene 120: 17-26.
  • Gelernter W., Schwab G.E. 1993. Transgenic bacteria, viruses, algae, and other microorganisms as Bacillus thuringiensis toxin delivery systems. In: ,,Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice'' (Eds. P.E. Enwistle, J.S. Cory, M.J. Bailey, S. Higgs). John Wiley & Sons, Chichester, New York, 89-104.
  • Kumar P.A., Sharma R.P., Malik V.S. 1996. The insecticidal proteins of Bacillus thuringiensis. Advances in Applied Microbiology 42: 1-43.
  • Lecadet M.-M., Frachon E.E., Cosmao Dumanior V., Ripoteau H., Hamon P., Laurent P., Thiery I. 1999. Updating the H-antigen classification of Bacillus thuringiensis. Journal of Appllied Microbiology 86: 660-672.
  • Lereclus D., Delécluse A., Lecadet M.-M. 1993. Diversity of Bacillus thuringiensis toxins and genes. In: ,,Bacillus thuringiensis, An. Environmental Biopesticide: Theory and Practice'' (Eds. P.E. Enwistle, J.S. Cory, M.J. Bailey, S. Higgs). John Wiley & Sons, Chichester, New York, 37-69.
  • Lonc E., Lachowicz T.M. 1992. Parasporalne krysztaly Bacillus thuringiensis jako środek specyficznej kontroli owadów. Postępy Mikrobiologii 2: 265-282.
  • Lonc E., Lachowicz T.M. 1994. Positive and negative implications of conventional and nonconventional Bacillus thuringiensis products. Wiadomości Parazytologiczne 40: 316-317.
  • Lonc E., Rydzanicz K. 1999. Wprowadzenie do biologii warunkującej środowiskowe zwalczanie komarów. Wiadomości Parazytologiczne 45: 431-448.
  • Lonc E., Lecadet M.-M., Lachowicz T.M., Panek E. 1997. Description of Bacillus thuringiensis wratislaviensis (H-47), a new serotype originating from Wrocław (Poland), and other Bt isolates from the same area. Letters in Applied Microbiology 24: 467-473.
  • Lonc E., Doroszkiewicz W., Klowden M.J., Rydzanicz K., Galgan A. 2001. Entomopathogenic activities of environmental isolates of Bacillus thuringiensis against dipteran Iarvae. Journal of Vector Ecology 26: 15-20.
  • Mahillon J., Rezsöhazy R., Hallet B., Delcour J. 1994. IS231 and other Bacillus thuringiensis transposable elements: a review. Genetica 93: 13-26.
  • Manasherob R., Ben-Dov E., Zaritsky A., Barak Z. 1998. Germination, growth and sporulation of Bacillus thuringiensis subsp. israelensis in excreted food vacuoles of the protozoan Tetrahymena pyriformis. Applied and Environmental Microbiology 64: 1750-1758.
  • Malinowski H. 2000. Wykorzystanie Bacillus thuringiensis w ochronie roślin: perspektywy i ograniczenia. Biotechnologia 3: 81-92.
  • Misztal L.H., Musiał W.G., Augustyniak J. 1996. Owadobójcze toksyny Bacillus thuringiensis w ochronie roślin. Postępy Mikrobiologii 3: 275-293.
  • Mulla S. 1991. Biological control of mosquitoes with entomopathogenic bacteria. Chinese Journal of Entomology, Special Publ. No.6: 93-104. Proceeding of IVth National Vector Control Symposium Taichung, Taiwan.
  • Murphy R.C., Stevens S.E., Jr. 1992. Clonning and expression of the cry IVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium Agmenellum quadruplicatum PR-6 and its resulting Iarvicidal activity. Applied and Environmental Microbiology 58: 1650-1655.
  • Romero M., Gill F.M., Orduz S. 2001. Expression of Mosquito Active Toxin Genes by a Colombian Native Strain of the Gram-negative Bacterium Asticcacaulis excentricus. Memorias do lnstituto Oswaldo Cruz, Rio de Janeiro 96: 257-263.
  • Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D.R., Dean D.H. 1998. Bacillus thurngiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews 62: 775-806.
  • Schnepf H.E., Whiteley H.R. 1981. Cloning and expression of the Bacillus thuringiensis protein gene in Escherichia coli. Proceedings of the National Academy Science of the United States of America 78: 2893-2897.
  • Siegel J .P. 2001. The mammalian safety of Bacillus thuringiensis - based insecticides. Journal of Interverbrate Patholology 77: 13-21.
  • Skovmand O., Bauduin S. 1996. Efficacy of a granular formulation of Bacillus sphaericus against Culex quinquefasciatus and Anopheles gambiae in Western African Countries. Journal of Vector Ecolology 22: 43-51.
  • Tenenbaum D.J. 2002. Breakthrougs put the bite on malaria. Environmental Health Perspectives no: A760-763.
  • Tomlin Cds (Ed.) 1997. The pesticide manual, 11th ed. Farnham, Surrey, British Crop Protection Council.
  • Trape J.-F., Pisson G., Spiegel A., Enel C., Rogier C. 2002. Combating malaria in Africa. Trends in Parasitology 18: 224-230.
  • Wu X.-Q., Vennison J., Liu H.-R., Ben-Dov E., Zaritsky A., Boussiba S. 1997. Mosquito larvicidal activity of transgenic Anabaena PCC7120 expressing combinations of genes from Bacilluli thuringiensis subsp. israelensis. Applied and Environmental Microbiology 63: 4971-4975.
  • Yap W.H., Thanabalu T., Porter A.G. 1994. Expression of mosquitocidal toxin genes in a gas-vacuolated strain of Ancylobacter aquaticus. Applied and Environmental Microbiology 60: 4199-4202.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-35cd130d-71c1-48f7-870e-bf140f9cee4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.